Category Archives: Math

The Equal Sign

True or False?

5 = 5

5 = 4 + 2

2 + 3 = 1 + 4

After reading so much about the meaning of the equal sign and equality in books such as Thinking Mathematically and About Teaching Mathematics , I anticipated students may think each was false for different reasons…..

5 = 5: There is no operation on the left side.

5 = 4 + 2: The sum comes first or 4+2 is not 5.

2 + 3 = 1 + 4: there is an operation on both sides or because 2+3 =5 (and ignore the 4) or because 2+3+1 ≠ 4.

While I anticipated how students may respond, I was so intrigued by the number of students (probably about 75%) that said false for 5=5. They were about split on the second one, but for many reasons – not many of them being that 5 ≠ 6. The final one left many confused, in fact one student said, “Well now you are just trying to confuse people by putting two plus signs.” So cute.

As they explained their reasoning, my mind was reeling….

  • What questions do I ask to get them to:
    • Think about what the symbols mean?
    • Talk about what is the same?
    • Realize the equal sign in the first one is not a plus sign, so there is no answer of 10?
    • See the equal sign to not mean “the answer is next”?
    • What wording do I use for the equal sign?
      • “The same as” felt wrong because the sides do not look the same in both cases….so, is “Is the same amount” a helpful way for them to think about it?

I got back to my room and starting thinking about what learning experiences would be helpful for students in building their understanding of the equal sign? I talked through it with some colleagues at school and reached out to those outside of school, I needed some serious help!

I started playing around with some cubes and realized how interestingly my thinking changed with each one. I didn’t take a pic of those cubes so I recreated them virtually to talk thru my thinking here.

The first set represents 5 = 5. I can see here where “the same as” works for the equal sign because there are 5 and they are all yellow. But what if I put 5 yellows on the left and 5 red on the right? Then they are the same quantity, but do not look the same.

The second set represents 2+3=5 and is definitely the one students are most comfortable seeing and representing as an equation. It looks and feels like composition to me so I can definitely see why student think the equal sign means “makes” or “the total is.” It looks like 2 and 3 more combine to make 5.

Something interesting happened with the green set. I made two sets of 5 and then broke one set to make the right side – felt like decomposition. I can see why it would feel differently to students. I also realized that when I look at them, I look left to right and much of that lends itself to the way I was thinking about what was happening.

The last set I made by taking my 2 sets of 5 connected cubes and breaking each set differently. Again, “the same as” doesn’t work for me here really well either because they don’t look the same.

Screen Shot 2017-04-26 at 6.27.05 PM.png

Still thinking of next steps because I always like to put context into play with these types of things, but I am finding that very difficult without forcing the way students represent their thinking which I don’t want to do.

Right now, things I am left thinking about before planning forward:

  • What do students attend to when we ask if things are the same?
  • Our language and recording is SO incredibly important.
  • How can these ideas build in K-1 to be helpful in later grades?
  • If I am thinking of moving students from a concrete to more abstract understanding, how does that happen? Is it already a bit abstract in the way the numbers are represented?
  • Do we take enough time with teachers digging into these ideas? [rhetorical]

I look forward to any thoughts! So much learning to do!

 

1st Gr Number String: Missing Number

Yesterday, I wrote a quick post as I was trying to decide which of two number talks I should do with a 1st grade class. I got some great feedback and went with the first one in the post! It was amazing and completely evident that the teacher, Ms. Williams, does a great job asking students to share their thinking regularly. The students were so clear in explaining their reasoning and asking questions of one another.

The first problem drew out exactly what I was hoping and more. One student shared counting on and a few students shared how they decomposed the 4 and added 2 and then 2 more. I was not expecting the use of a double, but two students used 8+8 in their reasoning. The use of their “double fact” reminded me of the solving equations conversations I have with Michael Pershan but in a much more sense-making way than I personally think about it. The students said they “knew 4 and 4 made 8 so they took 4 away and that changed the answer.” I tried to get out of them that they subtracted the 4 from the 16 as well, but it just made sense to them the 16 changed to 12 because he subtracted 4 from the 8. I am so glad I videoed this talk because I want to talk more about it after I re-watch it!

The second problem was as tricky, as I anticipated, and split the class between the answers 1 and 9. The students seemed very used to having the difference on the lefthand side of the equal sign which is great, but some still wanted to add 1 to the 4 instead of subtract the 4 from the missing number. I moved on to the final question because we were at a bit of a standstill at this point. Hindsight, I wish I did that problem last, but I had them journal about it after the talk.

IMG_4191

The final problem, which I wish was my first problem – what was I thinking in this order? – was great! They decomposed the 5, made 10 and talked their way through the two incorrect responses.

IMG_4192

I asked them to journal about the second problem when we finished. The prompt was to explain which answer, 9 or 1, they thought it was and why. Here are few examples:

IMG_0133.jpgIMG_0121.jpgIMG_0122IMG_0128IMG_0120IMG_0123.jpg

I think I would love to post the following string (all at once) on the board to start tomorrow’s lesson:

? – 4 = 5

5 = ? – 4

? + 4 = 5

5 = ? + 4

Ask what the question mark is in each one and which equations seem most similar.

Such a great day in 1st grade!

 

True or False Multiplication Equations

Today,  I was able to pop into a 3rd grade classroom and have some fun with a true or false equation routine! This routine has become one of my favorites, not only for the discussion during the activity, but more for the journals after the talk. I haven’t figured out quite how to use them with the students, but it gives me such great insight into their understandings that I would love to think about a way to have students reflect on them in a meaningful way.  I keep asking myself, what conjectures or generalizations could stem from this work?

I started with 4 x 3 = 3 + 3 + 3 + 3 to get students thinking about the meaning of multiplication and how we can solve for a product using repeated addition. I followed 6 x 4 = 8 + 8 + 4 to see how students talked about the 8’s on the right side. They could explain why it was false by either solving both sides or reasoning about the 8’s as two 4’s in some way.

My final problem was the one below, 8 x5 = 2 x 5 + 2 x 5 + 20. I chose this one because I wanted students to see an equation with multiplication on both sides. Up to this point, I structured them to be multiplication on one side and addition on the other.  There was a lot of solving both sides – I think because of the ease of using 5’s – but, as the discussion continued the students made some really interesting connections about why the numbers were changing in a particular way. I really focused on asking them, “Where do you see the 8 and 5 in your response?” to encourage them to think relationally about the two sides.

IMG_4181.jpg

I ended the talk with 8 x 6 = and asked the students to go back to their journals and finish that equation to make it true.

Some students knew it was equal to 48 right away and started writing equations that were equal to 48. For this student I probably would ask about the relationship between each of the new equations and 8 x 6.

IMG_0114

There are so many interesting things in the rest of them, that I am not sure what exactly to ask student to look at more deeply.

In all of them, I see…

  • Commutative property
  • Multiplication as groups of a certain number
  • Distributive property
  • Doubling and halving & Tripling and thirding

IMG_0103IMG_0104.jpg

IMG_0109IMG_0117IMG_0110

The student below shared this one with the class during the whole class discussion:

8 x 6 = 7 x 10 – 3 x 10 + 2 x 4

From her explanation, she could explain how both sides were 48, but when I asked her how it related to 8 x 6, her wheels started spinning. You can see she played all around her paper trying to make connections between the two. That is the type of thinking I want to engage all of the students in, but based on their own personal journal writing – but what is the right prompt? “Where is one side in the other?” or “How are they related?” <—that one feels like it will lead to a lot of “They are both 48” so I need a follow up.

IMG_0116

I actually left the room thinking about how I would explain how they two sides were related – in particular looking for either 8 groups of 6 or 6 groups of 8 on the right side. I found it was easier for me to find six 8’s, but now want to go back and find eight 6’s for fun. I can see how this could be so fun for students as well, but there is a lot of things going on here so I wonder how to structure that activity for them? Would love thoughts/feedback in the comments!

FullSizeRender.jpg

Asking Better Questions

I am sure we have all seen it at one time or another – those math questions that make us cringe, furrow our brow, or just plain confuse us because we can’t figure out what is even being asked. Sadly, these questions are in math programs more often than they should be and even though they may completely suck, they do give us, as educators, the opportunity to have conversations about ways we could adapt them to better learn what students truly know. These conversations happen all of the time on Twitter and I really appreciate talking through why the questions are so bad because it pushes me to have a more critical lens of the questions I ask students. Through all of these conversations, I try to lead my thinking with three questions:

  • What is the purpose of the question?
  • What does the question tell students about the math?
  • What would I learn about student thinking if they answered correctly? Incorrectly?

Andrew posted this question from a math program the other day on Twitter….

Screen Shot 2017-02-09 at 7.13.35 PM.png

I tried to answer my three questions…

  • What is the purpose of the question? I am not sure. Are they defining “name” as an expression? Are they defining “name” as the word? What is considered a correct answer here?
  • What does the question tell students about the math? Math is about trying to interpret what a question is asking and/or trick me because “name” could mean many things and depending on what it means, some of these answers look right. 
  • What would I learn about student thinking if they answered correctly? Incorrectly? Correctly? I am not sure I even know what that is because I don’t know what “name” means in this case. Is it a particular way the program has defined it?

On Twitter, this is the conversation that ensued, including this picture from, what I assume to be, the same math program:
Screen Shot 2017-02-09 at 6.56.47 PM.png

When a program gives problems like this, we not only miss out on learning what students know because they get lost trying to navigate the wording, but we also miss out on all of the great things we may not learn about their thinking. For example, even if they got the problem correct, what else might they know that we never heard?

The great thing is, when problems like this are in our math program, we don’t have to give them to students as is. We have control of the problems we put in front of students and can adapt them in ways that can be SO much better. These adaptations can open up what we learn about student thinking and change the way students view mathematics.

For example, if I want to know what students know about 12, I would just ask them. I would have them write in their journal for a few minutes individually so I had a picture of what each student knew and then would share as a class to give them the opportunity to ask one another questions.

After I saw those the problem posted on Twitter, I emailed the 2nd grade teachers in my building and asked them to give their students the following prompt:

Tell me everything you know about 12. 

20170208_092159 (1).jpg

Ms. Thompson’s Class

IMG_5487 (1).jpg

Mrs. Leach’s Class

IMG_5381.JPG

Mrs. Levin’s Class

Look at all of the things we miss out on when we give worksheets from math programs like the one Andrew posted. I do believe having a program helps with coherence, but also believe it is up to us to use good professional judgement when we give worksheets like that to students. While it doesn’t help us learn much about their thinking it also sends a sad message of what learning mathematics is.

I encourage and appreciate conversations around problems like the one Andrew posted. I think, wonder, and reflect a lot about these problems. To me, adapting them is fun…I mean who doesn’t want to make learning experiences better for students?

Looking for more like this? I did this similar lesson with a Kindergarten teacher a few years ago. Every time I learn so much and they are so excited to share what they know!

Fraction Talking Points: 3rd Grade

The 3rd grade is starting fractions this week and I could not be more excited. Fraction work 3-5 is some of my favorite stuff. Last year we tried launching with an Always, Sometimes, Never activity and quickly learned, as we listened to the students, it was not such a great idea. We did not give enough thought about what students were building on from K-2 which resulted in the majority of the cards landing in the “Sometimes” pile without much conversation. And now after hearing Kate Nowak talk about why All, Some, None makes more sense in that activity, it is definitely not something we wanted to relive this year!

We thought starting with a set of Talking Points would open the conversation up a bit more than the A/S/N, so we reworked last year’s statements. I would love any feedback on them as we try to anticipate what we will learn about students’ thinking and the ideas we can revisit as we progress through the unit. I thought it may be interesting to revisit these points after specific lessons that address these ideas.

Screen Shot 2017-06-01 at 8.22.07 AM.png

We were thinking each statement would elicit conversation around each of the following CCSS:

Talking Point 1CCSS.MATH.CONTENT.3.NF.A.3.C
Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the form 3 = 3/1; recognize that 6/1 = 6; locate 4/4 and 1 at the same point of a number line diagram.

Talking Point 2CCSS.MATH.CONTENT.3.NF.A.2
Understand a fraction as a number on the number line; represent fractions on a number line diagram.

Talking Point 3CCSS.MATH.CONTENT.3.NF.A.2.B
Represent a fraction a/b on a number line diagram by marking off a lengths 1/b from 0. Recognize that the resulting interval has size a/b and that its endpoint locates the number a/b on the number line.

Talking Point 4: CCSS.MATH.CONTENT.3.NF.A.1
Understand a fraction 1/b as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a/b as the quantity formed by a parts of size 1/b.

Talking Point 5CCSS.MATH.CONTENT.3.NF.A.3.D
Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.

Talking Point 6CCSS.MATH.CONTENT.3.NF.A.3.C Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the form 3 = 3/1; recognize that 6/1 = 6; locate 4/4 and 1 at the same point of a number line diagram.

After the activity, we have a couple of ideas for the journal prompt:

  • Which talking point did your whole group agree with and why?
  • Which talking point did your whole group disagree with and why?
  • Which talking point were you most unsure about and why?
  • Which talking point do you know you are right about and why?
  • Could any of the talking points be true and false?

Would love your feedback! Wording was really hard and I am really still struggling with #4.

If you want to read more about Talking Points for different areas, you can check out these posts:

A Coordinate System

This standard in 5th grade always seemed like so much of a “telling lesson” for me.

Screen Shot 2017-01-24 at 6.12.12 PM.png

I never thought it was really addressed in the spirit of this standard in our curriculum, so I was typically like, “Here is what we call a coordinate grid. These are axes, x and y. We name the points like this…” and so on. It is not my usual approach so it always felt blah for me, for lack of a better word. I told them, they practiced plotting some points, and we played a little bit of Battleship (which was really fun).

Last week, I was planning with Leigh, a 5th grade teacher, and we spent a lot of time just talking about what we appreciate about the grid and how we can develop a sense of need in the students for it. Since they are in the middle of their 2D Geometry unit, we thought this could be the perfect place to plot points that connect to form polygons and look at patterns in the ordered pairs.

The questions we wanted to students to reason about through our intro lesson was:

  • Why a coordinate grid?
  • Why name a point with an ordered pair? 
  • Why is this helpful?
  • What structure do we see?

So, we created this Desmos activity. This was our thinking on the slides and the pausing points we have planned for discussion:

Slide 1: It is really hard to describe a location without guides or landmarks.

Slide 2: Note how difficult it is. Pause and show class the results.

Slide 3: It gets easier. Still need some measurement tool. Notice the intersection of axes.

Slide 4: Note it is a bit easier this time. Pause and show class results.

Slide 5: Much easier because of the grid. Still need a starting point. See it is the distance from axes.

Slide 6: Now it is much easier. Pause show class results. Would love to show all three choices side-by-side (don’t know if this is possible in Desmos).

~Pause~ Ask, “What names of things on the grid would make it easier to talk about the point’s location?” Give students vocabulary and ask them to revisit Slide 6 to describe the location to a partner.

Slide 7: Practice writing some ordered pairs.

Slide 8: Practice writing some ordered pairs.

Slide 9: Start to see some structure in the four ordered pairs of a rectangle.

We are ending with this exit ticket (with grid paper if they choose to use it):

Screen Shot 2017-01-24 at 6.46.48 PM.png

While we are not sure this is the best way to intro the grid, we thought it would generate some interesting conversation. Since we are teaching it tomorrow, there isn’t much time for feedback for change, but we would love your thoughts.

Rhombus? Diamond? Square? Rectangle?

It happens every year, in what seems like every grade level…students continually call a rhombus a diamond. Last year, when we heard 3rd graders saying just this, Christopher helped the 3rd grade teachers and me put the students’ thinking to the test with a Which One Doesn’t Belong he created.

CayX_LdUUAEIQb5.png

 

This year, at the beginning of the geometry unit, we heard the diamond-naming again along with some conversation about a rectangle having to have 2 long sides and 2 short sides. What better way to draw out these ideas for students to talk more about them than another Which One Doesn’t Belong? We changed the kite to a rectangle this time, hoping we could hear how they talked about it’s properties a bit more.

Screen Shot 2017-01-05 at 6.30.31 PM.png

Overwhelmingly, the class agreed D did not belong because it had “5 sides and 5 corners” and eventually got around to calling it a diamond, which in their words was “not a real shape.”

While we knew a lot of things could arise, our purpose was diamond versus rhombus conversation, so of course the students had other plans and went straight to the square versus rhombus.We wouldn’t expect anything different!:) For every statement someone had about why the square or rhombus did not belong, there was a counter-statement (hence the question marks in the thought bubbles).

IMG_3730.jpg

Jenn, the teacher, and I were really surprised at how much orientation of A and B mattered to the name they gave the square and rhombus but did not matter for the rectangle. That was just a rectangle, although one student did wonder if a square was also a rectangle (he heard that from his older sister). The students had so many interesting thoughts that we actually had to start a page with things they were wondering to revisit later! That distributive property one blew me away a bit!:)

IMG_3731.jpg

We then sent them back to journal because we wanted to hear how they were categorizing a square and rhombus. It ended up being really interesting just seeing them try to explain why they were different and change their mind because they just started turning their journals around!

Some stuck with them being different..

img_3738

 

Some thought they were different, but one could become the other…

 

img_3744

Some were wavering but the square was obviously the “right way.”

img_3737-1

Some argued they were the same…

So much great stuff for them to talk about from here! I left wondering where to go from here? In thinking about the math, is it an orientation of shapes conversation? or Is it a properties conversation? In thinking about the activity structure, would you pair them up and have them continue the conversation? Would you throw the rectangle into this conversation? Would you have some playing with some pattern blocks to manipulate? Would you pull out the geoboards? I am still thinking on this and cannot wait to meet and plan with the 3rd grade team!

However, before I left school today, I went back to the 3rd grade standards to read them more closely:Screen Shot 2017-01-05 at 7.07.05 PM.png

and read the Geometry Learning Progressions, only to find this in 1st grade:

Screen Shot 2017-01-05 at 5.58.18 PM.png

Would love to hear any thoughts and ideas in the comments!

 

 

First Fraction Lesson of 4th Grade

The first lesson of a new unit always feels like an entire class period of formative assessment to me, which I love! I think finding out what the students know about a topic, especially if it is the first time it is introduced that year, is so interesting.

Since the first lesson of the 4th grade fraction unit starts with fractions of a 4 x 6 array, we wanted to create an introduction lesson that was more reflective of all of the great work they did with fraction strips in 3rd grade to get a better picture of what they know. In 3rd grade they do all of the cutting of the strips, and since we didn’t feel that was necessary to do again, I created a SMARTBoard file so we could build together. [the file is attached at the end of the post if you want to use it].

I posed this slide to introduce the whole:

Screen Shot 2016-11-30 at 4.59.42 PM.png

Then I asked this sequence of questions as we built them on the board:

  • If I wanted halves, how many pieces would I have? What is the size of each piece?
  • If I wanted thirds, how many pieces would I have? What is the size of each piece?
  • etc….until they were all built.

I wanted to reintroduce the language of “size of the piece” from their 3rd grade experiences. Every once in a while I would pause and ask how much I would have if I had more than 1 of those pieces to see if they could name fractions over a unit. For example, What if I had 3 of those fourths? How much would would I have? 

Next, we put up the following questions with the picture of the fraction strips we built:

Screen Shot 2016-11-30 at 5.00.06 PM.png

They recorded them in the journals as a group and then we made a poster to add to as the year progresses. They started with fractions they could show on the fractions strips and an interesting conversation about the fact that we couldn’t list any for 1/8 or 1/12 based on the strips, arose. After talking with their groups, they generated a couple. The conversation about the change in the size of the piece when we make equivalents and how many pieces we would have was really awesome (Yeah, 3rd grade team):)

img_3365

This was as much as we could fit into one class period, so we asked them to journal about any patterns they noticed or things they were wondering about fractions.

I apologize for the overload of student journals from this point forward, but there were so many great things to think about in planning the unit from here!

These are things that jumped out at me after reading and leaving notes in their journals, I would love to hear any other things that stood out to you:

  • A lot of talk about “doubling” and “halving” when naming equivalent fractions. Will want to address what is exactly doubling, what that means in terms of the fraction strips, and how it is affecting the numerator and denominator.
  • Interesting noticing and wondering about addition. Some wondering how it works and others thinking they know.
  • Love the even and odd talk throughout!
  • Some wondering about multiplication and division of fraction!
  • The range of fractions – how many we can name, how many unit fractions there are.
  • The size of a fraction in different forms – Is the whole the biggest fraction? Is the numerator smaller than the denominator?

img_3355img_3354img_3362img_3359img_3358img_3349img_3356img_3364img_3363img_3360img_3352img_3351img_3357img_3361img_3350

In case you want to try it out:

SMARTBoard file for 4th grade

SMARTBoard file for 5th grade

PDF file of the file.

Cuisenaire Rods: Fun in 4th

The 4th grade has just started their fraction unit, so I was curious how that may impact their work with the Cuisenaire rods. I started just like I did in Kindergarten and 3rd grade, with a notice and wonder:

IMG_3441.jpg

There were two of the ideas that really struck me as things I want to have the students explore further later: First was, “2 of the staircases (the staggered rods in order of size) could make a square.” They had them arranged on their desks like the picture below…but I want them to answer:

  • Is that a square?
  • If not, could we make it a square?

Then I started to wonder, do we call it a square? Should we say square face? Then what about area…would we say, “What is the area of the rectangle?”? That feels wrong because they keep calling the white rod a cube (which it is). But then asking about volume is not 4th grade. BUT, the tiles we use for area in 3rd grade are also 3-dimensional. <–would love thoughts on any of that in the comments!

IMG_3439.jpg

One student noticed that the orange rod was the height of the staircase and I thought of area again since it was said right after the comment above. This idea would be really helpful for the students above when they are determining if their figure is a square.

IMG_3440.jpg

I loved that one group noticed that any of the rods could be a whole and another group wondered if orange was the whole. Great lead into what I was thinking I wanted them to explore!

I asked them to find values for the rods based on their relationships. Of course the very first group I call on had 2 as the whole, which blew a lot of students minds, so I want to revisit that a bit later and ask them to explain how that works.

All of the other groups had orange as either 1 or 10, so I asked them to find the other values if the orange was 5 and 100. They played with that for a bit and then I began to hear a lot of aha’s, so I set them off to find more and they could have gone on forever.

IMG_3443.jpg

I left them with the prompt, “Tell me about the patterns and relationships you notice.” and for those who looked like they were struggling to answer that question, I added, “If you are struggling with that, tell me how you could find the rest of the values if I gave you one of them and which one would you want?”

I loved how this student chose the orange, white and yellow as the easiest end, beginning, and half. I also like the red x 2 is purple, but we need to talk through that notation a bit.

img_3445

This was the most common response, seeing the numbers get smaller as the rod got shorter.

img_3446

This student’s noticing could be an interesting number choice question to pose: Why do you think groups chose numbers for orange that were doubles or halves of the other numbers we already had?

img_3447

This student disagreed with the student who gave the responses in the first column because he is determined the white is 1/10 because the orange is 1. Would be great to pair them up and have them come to an agreement.

img_3448

This student is seeing the white value adding to each value above it to get the next. I also love how she writes notes about how neat her handwriting is:)

img_3449

I would love to have them play around with this first pattern in this entry! What other relationships could they find after they explored this one?

img_3450

So much fun! Cannot wait to get into other grade levels to see if I can begin to find a progression of ideas with these rods!

 

My Beginnings With Cuisenaire Rods

I have never been more intrigued with using Cuisenaire rods in the classroom until I started reading Simon’s blog! I admit, I have read and watched his work from afar…not knowing really where to start with them and was afraid to just jump into another teacher’s classroom and say, “Hey let me try out something!” when I really didn’t know what that something may be. However, after Kassia reached out to Simon on Twitter asking how to get started with Cuisenaire rods and Simon wrote a great blog response, I was inspired to just jump right in!

I am a bit of an over-planner, so not having a really focused goal for a math lesson makes me a bit anxious. I am fairly certain I could anticipate what 4th and 5th graders would notice and wonder about the Cuisenaire rods because of my experience in that grade band, however I wanted to see what the younger students would do, so I ventured into a Kindergarten and 3rd grade classroom with a really loose plan.

Kindergarten (45 minutes)

Warm-up: Let’s notice and wonder!

  1. Dump out the bags of Cuisenaire rods in the middle of each table of 4 students.
  2. Tell them not to touch them for the first round.
  3. Ask what they notice and wonder and collect responses.

Things they noticed:

  • White ones looked like ice cubes.
  • Orange ones are rectangles.
  • End of blue one is a diamond (another student said rhombus)
  • Different colors (green, white, orange..)
  • They can build things (which is why we did no touching the first round:)
  • Orange is the longest.
  • They are different sizes.
  • We can sort them by colors.
  • We can sort them by size.

Things they wondered:

  • What do they feel like?
  • What can we make with them?

Activity 1: Let’s Sort!

  1. Tell the students to sort them by size or color. (they quickly realized it was the same thing)
  2. Discuss their sort/organization and check out how other tables sorted.

I was surprised to see not many sorted them into piles because that is normally how they sort things. I am wondering if the incremental size difference between each rods made them do more of a progression of size than sort into piles? Some groups worked together while others like making their own set with one of each color (and size) and keep making more of those!

Activity 2: Let’s Make an Orange!

Since a lot of students kept mentioning that the orange was the longest, I decided to see if they could build some trains (as Simon calls them) that made an orange.

My time was running out, but it left my mind reeling of where I wanted to go next! My inclination is to ask them if they could assign numbers to some of the rods or if they could build some trains the same length as the different colors? I would love to hear which piece is their favorite piece because a lot of them found the smallest cube really helpful when building the orange.

3rd Grade (60 minutes)

Warm-up: Let’s notice and wonder!

Things they noticed:

  • Groups were the same color and length.
  • Blue and white is the same length as the orange rod.
  • Kind of like adding.
  • White is 1 cm.
  • Go up by one white cube every time.
  • Odd + even numbers
  • 2 yellows + anything will be bigger than 0.
  • 1 white + 1 green = 1 magenta

Things they wondered:

  • Is red 1 inch?
  • How long are the rods altogether? (Prediction of 26 or 27 in wide)
  • Is orange 4 1/2 or 5 inches?
  • Why doesn’t it keep going to bigger than orange?

Activity 1: Let’s build some equivalents!

I found 3rd graders love to stand them up more than Kindergarteners:)

Activity 2: Let’s assign some values!

After they built a bunch, I asked them to assign a value to each color that made sense to them…this was by far my favorite part – probably because it was getting more into my comfort zone!

IMG_3396.jpg

Again, time was running out, but next steps I am thinking…

  • What patterns and relationships do you see in the table?
  • What columns have something in common? Which ones don’t have anything in common? Why?
  • What if I told you orange was 1? What are the others?
  • What if orange was 2? What happens then?

Thank you so much Simon for all of inspiration and Kassia for the push into the classroom with these! Reflecting, I was much more structured than Simon and Kassia, but I look forward to a bit more play with these as the year goes on! I look forward to so much more play with the Cuisenaire rods and continuing Cuisenaire Around Ahe World!