Category Archives: Fractions

Small Change, Big Impact.

The other day, Jamie tweeted about this example problem from a 4th grade program:

DUuu0UhV4AAw4pa.jpg

After looking at the Standards, Learning Progressions, and discussing the 3rd grade fraction work, all of us on the thread agreed it was an appropriate question for 4th grade but then started to question whether we would give this problem as is, or adapt it. I really appreciate these conversations because they move us beyond ‘this problem sucks, don’t do it’ or ‘do this problem instead, it’s more fun’ to thinking about a realistic thought process teachers can use when working with a text that may not be aligned to the standards or lessons that may not best meet the needs of their students.

While all of the adaptations we discussed sounded similar, I couldn’t help but wonder how each impacted so many classroom things in different ways. What may seem like a small change can easily impact the amount of time it takes in class, students’ approaches to the problem, what we learn about student thinking, and the follow-up question we could potentially ask.

There is no right or wrong adaptation here, but I wanted to sketch out how each change to the problem impacts teaching and learning.

Change 1: Remove the context and only give the expression 1 – 26. 

This would be the quickest way to do this problem in class. With this change, I would be curious to see how students think about 1 in the expression.

Do they record it as 66? Do they draw a diagram? If so, what does it look like? How is it partitioned? Are the pieces removed in the diagram or is there work off to the side? A potential follow-up could be to ask students to write a context to match the expression. I think in their contexts I would have the opportunity to see how they thought about 1 in a different way.

Change 2: Remove the expression and only give the context. 

I find anytime there is a context it takes a bit longer because of the time to read and reread the problem so this change would take a bit more class time than the first. This change would give students more access to the problem and I could possibly learn how they make sense of a context, but I wonder what I would learn about their fractional thinking. Since the context pushes students to think about 1 as the whole pizza and also tells them that there are 6 equal pieces, the diagram, partitioning, and denominator are practically done for them.

Because of this, I may not learn if they know 1 is equivalent to 6and may not find out how they represent fractions in a diagram because I imagine most would draw a circle. Since they could do the removal on the circle, I also wonder if I would learn much about how they saw this problem as an expression so I would add that as my follow-up question.

Change 3: Remove the expression and the numbers from the context.

This one ​would definitely take an entire class period as a numberless word problem and probably the longest to plan. Because it takes the longest to plan and implement I really have to think about what I learn above and beyond the two changes previously mentioned if I were to do it this way.

I imagine the scenario could sound like this:

“Sam ordered a pizza cut into equal pieces. He ate some of the pizza and put the rest away for later.” or “Sam ordered a pizza. He ate some of the pizza and put the rest away for later.” 

When I do a numberless problem, my goals are to give students access to the problem and see how they make sense of a context without the numbers prompting them to feel like they have to do something. I have to plan for how I craftily find the appropriate time to let them notice and wonder and plan questions that elicit the subtraction from 1 that I hope to see. I also like to give students a chance to choose their own numbers for problems like these in order to see how they think about the reasonableness of numbers, which adds more time. The hardest part here is getting to the fraction work because I think students could stay in whole numbers as they talk about number of pieces. I can hear them wondering how many pieces it is cut into and how many he ate – neither of which guarantees fractions. So, while this has the potential to get at everything Change 1 and 2 do, a teacher must weigh how much the making sense of context portion meets the needs of his or her students.

All of this for one problem and I haven’t even discussed the two most important questions we need to ask ourselves before even making these changes – what understandings are students building on? and what understandings are students building towards?

There is much to think about in planning that is often hard to think about all of the implications of one tiny change to a task, however, thinking about how each of these changes impacts teaching and learning is the fun and exciting part of the work!


After the post, Brian had another change that he posted on Twitter! I wanted to capture it here so it is not lost in the crazy Twitter feed:

 

Fraction Division and Complex Fractions

It is posts like Lisa’s most recent one that make me long for more collaboration K-12. I have to admit, when I saw her Twitter post with the words pre-calculus and simplifying complex fractions, my inclination was to skim right by because I would not understand the post anyway. Literally, my only recollection of simplifying complex fractions like the one at the beginning of her post is through a set of procedures I was explicitly taught step by step. However, when I looked at the accompanying image that showed fraction division, I was curious how my understandings of fraction division connected to her pre-calculus work.

I loved reading Lisa’s process of making the math accessible for her students because I am sure many would have felt like I did if shown the CPM opener from the very beginning. It is that same process of thinking about what students know and how we can build on it that made me get out my journal and start sketching out connections I was making as I read. In no time, my journal was full of problems, diagrams, concepts, questions and every tab on my computer referenced the progressions, standards, references linked in Lisa’s post, and a blank email to Kate and Ashli to jot down my questions for them about the math. Talk about a wonderful rabbit hole to be going down.

The more I read and reread this post, the more I think it could lead to many more posts connecting how students are introduced to ideas in elementary school, the impact it has on later work, and the questions I have as I go. My questions revolve around not only the math, but also how these mathematical ideas build, how our representations impact student understandings, and how there are times when a problems lends itself to one way of thinking versus another.

During my first read, two things I wondered were:

  1. How does the way the fractions are written impact the way I think about them?
  2. What happens when I have two ways of thinking about fractions and two ways of thinking about division?

How does the recording of the fractions impact the way I think about them?

As the post progressed from an image of a complex fraction to one of fraction division, I felt like Lisa must have felt, wondering what students may know about the complex fraction and why they may struggle. My initial thought was they may not understand that a complex fraction is even division. This may not be the case for most, however based on what I remember from high school, I saw complex fractions as one thing I did operations on. As an elementary school teacher, it seems similar to the difference between seeing a fraction as a number (introduced in 3rd grade) versus seeing fraction as division (introduced in 5th grade).  As I looked at CPM’s complex fraction and how it was written, I only thought about it as multiplying the numerator by the reciprocal of the denominator because of how I was taught. However, when I looked at the fraction division problem written horizontally, I found myself attending more to each fraction as a number, using what I know about division to find the quotient. Less intimidating to me solely because of the way it was written on the paper.  I wonder if this compares a bit to how we record computation problems horizontally versus stacked during number talks to encourage thinking about a problem versus always relying on the algorithm?

I know the fraction division problem means the same thing written either way, but how they are written impacts my thinking a lot. From an elementary perspective where we spend so much time attending to developing understanding of fraction as a number, I am not inclined to really think about what it means to divide the two terms when written as a complex fraction. To that end, I wonder if the opening problem written one way versus another evokes a different meaning for some students?

Screen Shot 2017-11-26 at 1.52.26 PM.png

Knowing that there are things to be learned in between the problems listed below, but in terms of seeing the complex fraction as division where I think about the individual pieces as things in their own right, is one possibly a small transition to the other for me or students like me?

Screen Shot 2017-11-26 at 5.41.14 PM.png

Lisa – I would love to hear more about the transition prompt between the fraction division problems the students were solving and the CPM problem. I think that is a really important piece of what you did so beautifully in this lesson.

What happens when we have two ways of thinking about fractions and two ways of thinking about division?

I think about fractions in the two ways I mentioned above: as a number and as division.

I think about division in two ways: how many groups? and how many in each group?

First, fractions: In 3rd grade, students learn a fraction is a number in which the numerator indicates the number of pieces and the denominator (as the denominator of a unit fraction) represents the size of the piece. For example, we say 3/is 3 pieces the size of 1/4. This understanding and associated language are so beautiful when students use it to compare fractions and create equivalent fractions. In my 5th grade class, my students were comfortable using complex fractions such as1/2 / when talking about 1/6 because they were thinking ½ a piece the size of ⅓ is . No division, just reasoning about the pieces and their size. When comparing 4/9 to 5/7, students would use the reasoning that four and a half ninths and three and a half sevenths are equivalent to a half so 5/7 is more than a half and 4/9 is less than a half. I saw a glimpse into how that thinking was not helpful when they asked what happened when there is a fraction in the denominator. This is where understanding fraction as division would have been more helpful. 

In 5th grade students also learn about fractions as division. In terms of sharing situations, they learn that 5 things shared by 3 people results in each person getting 5/3 of the things or 5 divided by 3. In these situations, thinking about 5 pieces the size of 1/3 is not particularly helpful in solving, but division is. However, when it comes back to interpreting the solution, 5 pieces the size of 1/3 is needed.

Questions I am thinking about at this point:

  • How does the complex fraction in the post relate to either or both of these ways to think about fractions?
  • How does the way we represent fraction division relate to one or both of these ways to think about fractions?

Now, division: In 3rd grade, students learn division in two contexts: how many in groups and how many in each group.  In 5th grade, students use those understandings to divide whole numbers by unit fractions and unit fractions by whole numbers. Those two meanings of division carry into middle school to divide fractions by fractions and conceptually understand the reason we multiply by the reciprocal.

After reading Kristin and Bill’s series of posts on fraction division, I am now constantly thinking about how the context (interpretation) for division impacts the way students represent and solve a problem. I know changing the way I think about the division context changes how I represent the problem as well as how I operate with the reciprocal.

Questions I am thinking about at this point:

  • Does one context of division connect more closely with the CPM complex fraction problem?
  • Does the visual fraction model of the the division problem impact the way students approach the complex fraction problem?
    • Is an array representing both fractions being divided helpful in this complex fraction?
    • Is one bar model representing both fractions on one helpful in this complex fraction?
    • Is one way of representing it more helpful than the other?

Obviously, I have a lot to read about how a problem such as the one Lisa posed progresses after middle school but after seeing the division of fraction problem,  I am even more intrigued to see how these ideas progress from the time they are introduced. I am so curious when certain ways of thinking are more helpful than others and how we can construct learning experiences that help all students have access to the mathematics in a lesson in the way Lisa did.

CCSSMashup – Fractions

I never tire of conversations about the 3rd – 5th grade fraction progression because after each one, I leave with the desire to reread the Standards and Progressions with a new lens.

A few weeks ago, a conversation about 3rd grade fractions sent me back to the Standards with a #pairedtexts type of lens. Unlike the hashtag’s typical MO of pairing contrasting texts, I was looking for standards that connected in a meaningful, but maybe unexpected way. By unexpected, I don’t mean unintentional, I mean the two standards are not necessarily near-grade or in the same strand, so the connection (to me) is not as obvious as one standard building directly toward another.

The conversation focused on this standard:

Screen Shot 2017-10-12 at 3.01.16 PM.png

With that standard in mind, imagine a 3rd grade student is asked to locate 3/4 on a number line on which only 0 is marked.

I expect a student would mark off the 1/4’s starting at 0 and write 3/4 above the point after the third 1/4 segment. What exactly is the student doing in that process?

Is the student adding?

Is the student counting?

Is the student doing both?

How does adding and counting look or sound the same in this scenario? different?

This is where I find pairing two standards fun and interesting to think about because it demonstrates how important seemingly unrelated ideas work together to build mathematical understandings. It is also really fun to think about how a standard in Kindergarten is so important for work in grades 3-5 and beyond.

In this scenario, I think we instinctively believe students are adding unit fractions when asked to place 3/4 on the number line because the standard is in the fraction strand and therefore we consider all of the work to be solely about fractions. We also sometimes impose our thinking on what students are actually doing in this task. For example, you could imagine the student marking off the fourths, stopping after the third one, writing 3/4 and say the student was adding 1/4+1/4+1/4 to get to the 3/4 because they moved along the number line. If this is the case, then the standard would pair with this 4th grade standard:

Screen Shot 2017-10-12 at 3.36.21 PM.png

Don’t get me wrong, those standards definitely pair as students move from 3rd to 4th grade, however, since the scenario is about a 3rd grade student, pairing it with a higher grade level standard doesn’t seem to make sense in terms of what students are building on. Right here, it is really interesting to pause and think about how building fractions from unit fractions, locating a fraction on a number line, and adding unit fractions are slightly different things a progression.

When I think about the student locating 3/4 in 3rd grade, I hear counting (with a change in units) and would pair that 3rd grade standard with this Kindergarten counting and cardinality standard:

Screen Shot 2017-10-14 at 8.58.36 AM.png

However, because the 3rd grade work is on a number line and the arrangement and order does matter, I would have to add this 2nd grade measurement standard into the mix, but take off the sum and differences part:

Screen Shot 2017-10-12 at 3.35.21 PM.png

So, instead of a #pairedtext, I now think of it more as a #CCSSMashup to create this standard:

Screen Shot 2017-10-14 at 8.59.26 AM.png

With that mashup in mind, I went back to the progressions documents to look for evidence and examples of this.

In the 3rd Grade NF Progression these parts jumped out at me as being representative of this standard mashup:

The goal is for students to see unit fractions as the basic building blocks of fractions, in the same sense that the number 1 is the basic building block of the whole numbers; just as every whole number is obtained by combining a sufficient number of 1s, every fraction is obtained by combining a sufficient number of unit fractions.

The number line reinforces the analogy between fractions and whole numbers. Just as 5 is the point on the number line reached by marking off 5 times the length of the unit interval from 0, so 5/3 is the point obtained in the same way using a different interval as the basic unit of length, namely the interval from 0 to 1 /3 .

There is also a great “Meaning of Fractions” video on the Illustrative Mathematics site that explains this idea with visuals.

There are so many of these great mashups in the standards, especially in the fraction strand, that I find incredibly helpful in thinking about how students coherently learn mathematics.

I look forward to hearing your favorite #CCSSMashup!

Fraction Talking Points: 3rd Grade

The 3rd grade is starting fractions this week and I could not be more excited. Fraction work 3-5 is some of my favorite stuff. Last year we tried launching with an Always, Sometimes, Never activity and quickly learned, as we listened to the students, it was not such a great idea. We did not give enough thought about what students were building on from K-2 which resulted in the majority of the cards landing in the “Sometimes” pile without much conversation. And now after hearing Kate Nowak talk about why All, Some, None makes more sense in that activity, it is definitely not something we wanted to relive this year!

We thought starting with a set of Talking Points would open the conversation up a bit more than the A/S/N, so we reworked last year’s statements. I would love any feedback on them as we try to anticipate what we will learn about students’ thinking and the ideas we can revisit as we progress through the unit. I thought it may be interesting to revisit these points after specific lessons that address these ideas.

Screen Shot 2017-06-01 at 8.22.07 AM.png

We were thinking each statement would elicit conversation around each of the following CCSS:

Talking Point 1CCSS.MATH.CONTENT.3.NF.A.3.C
Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the form 3 = 3/1; recognize that 6/1 = 6; locate 4/4 and 1 at the same point of a number line diagram.

Talking Point 2CCSS.MATH.CONTENT.3.NF.A.2
Understand a fraction as a number on the number line; represent fractions on a number line diagram.

Talking Point 3CCSS.MATH.CONTENT.3.NF.A.2.B
Represent a fraction a/b on a number line diagram by marking off a lengths 1/b from 0. Recognize that the resulting interval has size a/b and that its endpoint locates the number a/b on the number line.

Talking Point 4: CCSS.MATH.CONTENT.3.NF.A.1
Understand a fraction 1/b as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a/b as the quantity formed by a parts of size 1/b.

Talking Point 5CCSS.MATH.CONTENT.3.NF.A.3.D
Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.

Talking Point 6CCSS.MATH.CONTENT.3.NF.A.3.C Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the form 3 = 3/1; recognize that 6/1 = 6; locate 4/4 and 1 at the same point of a number line diagram.

After the activity, we have a couple of ideas for the journal prompt:

  • Which talking point did your whole group agree with and why?
  • Which talking point did your whole group disagree with and why?
  • Which talking point were you most unsure about and why?
  • Which talking point do you know you are right about and why?
  • Could any of the talking points be true and false?

Would love your feedback! Wording was really hard and I am really still struggling with #4.

If you want to read more about Talking Points for different areas, you can check out these posts:

First Fraction Lesson of 4th Grade

The first lesson of a new unit always feels like an entire class period of formative assessment to me, which I love! I think finding out what the students know about a topic, especially if it is the first time it is introduced that year, is so interesting.

Since the first lesson of the 4th grade fraction unit starts with fractions of a 4 x 6 array, we wanted to create an introduction lesson that was more reflective of all of the great work they did with fraction strips in 3rd grade to get a better picture of what they know. In 3rd grade they do all of the cutting of the strips, and since we didn’t feel that was necessary to do again, I created a SMARTBoard file so we could build together. [the file is attached at the end of the post if you want to use it].

I posed this slide to introduce the whole:

Screen Shot 2016-11-30 at 4.59.42 PM.png

Then I asked this sequence of questions as we built them on the board:

  • If I wanted halves, how many pieces would I have? What is the size of each piece?
  • If I wanted thirds, how many pieces would I have? What is the size of each piece?
  • etc….until they were all built.

I wanted to reintroduce the language of “size of the piece” from their 3rd grade experiences. Every once in a while I would pause and ask how much I would have if I had more than 1 of those pieces to see if they could name fractions over a unit. For example, What if I had 3 of those fourths? How much would would I have? 

Next, we put up the following questions with the picture of the fraction strips we built:

Screen Shot 2016-11-30 at 5.00.06 PM.png

They recorded them in the journals as a group and then we made a poster to add to as the year progresses. They started with fractions they could show on the fractions strips and an interesting conversation about the fact that we couldn’t list any for 1/8 or 1/12 based on the strips, arose. After talking with their groups, they generated a couple. The conversation about the change in the size of the piece when we make equivalents and how many pieces we would have was really awesome (Yeah, 3rd grade team):)

img_3365

This was as much as we could fit into one class period, so we asked them to journal about any patterns they noticed or things they were wondering about fractions.

I apologize for the overload of student journals from this point forward, but there were so many great things to think about in planning the unit from here!

These are things that jumped out at me after reading and leaving notes in their journals, I would love to hear any other things that stood out to you:

  • A lot of talk about “doubling” and “halving” when naming equivalent fractions. Will want to address what is exactly doubling, what that means in terms of the fraction strips, and how it is affecting the numerator and denominator.
  • Interesting noticing and wondering about addition. Some wondering how it works and others thinking they know.
  • Love the even and odd talk throughout!
  • Some wondering about multiplication and division of fraction!
  • The range of fractions – how many we can name, how many unit fractions there are.
  • The size of a fraction in different forms – Is the whole the biggest fraction? Is the numerator smaller than the denominator?

img_3355img_3354img_3362img_3359img_3358img_3349img_3356img_3364img_3363img_3360img_3352img_3351img_3357img_3361img_3350

In case you want to try it out:

SMARTBoard file for 4th grade

SMARTBoard file for 5th grade

PDF file of the file.

Cuisenaire Rods: Fun in 4th

The 4th grade has just started their fraction unit, so I was curious how that may impact their work with the Cuisenaire rods. I started just like I did in Kindergarten and 3rd grade, with a notice and wonder:

IMG_3441.jpg

There were two of the ideas that really struck me as things I want to have the students explore further later: First was, “2 of the staircases (the staggered rods in order of size) could make a square.” They had them arranged on their desks like the picture below…but I want them to answer:

  • Is that a square?
  • If not, could we make it a square?

Then I started to wonder, do we call it a square? Should we say square face? Then what about area…would we say, “What is the area of the rectangle?”? That feels wrong because they keep calling the white rod a cube (which it is). But then asking about volume is not 4th grade. BUT, the tiles we use for area in 3rd grade are also 3-dimensional. <–would love thoughts on any of that in the comments!

IMG_3439.jpg

One student noticed that the orange rod was the height of the staircase and I thought of area again since it was said right after the comment above. This idea would be really helpful for the students above when they are determining if their figure is a square.

IMG_3440.jpg

I loved that one group noticed that any of the rods could be a whole and another group wondered if orange was the whole. Great lead into what I was thinking I wanted them to explore!

I asked them to find values for the rods based on their relationships. Of course the very first group I call on had 2 as the whole, which blew a lot of students minds, so I want to revisit that a bit later and ask them to explain how that works.

All of the other groups had orange as either 1 or 10, so I asked them to find the other values if the orange was 5 and 100. They played with that for a bit and then I began to hear a lot of aha’s, so I set them off to find more and they could have gone on forever.

IMG_3443.jpg

I left them with the prompt, “Tell me about the patterns and relationships you notice.” and for those who looked like they were struggling to answer that question, I added, “If you are struggling with that, tell me how you could find the rest of the values if I gave you one of them and which one would you want?”

I loved how this student chose the orange, white and yellow as the easiest end, beginning, and half. I also like the red x 2 is purple, but we need to talk through that notation a bit.

img_3445

This was the most common response, seeing the numbers get smaller as the rod got shorter.

img_3446

This student’s noticing could be an interesting number choice question to pose: Why do you think groups chose numbers for orange that were doubles or halves of the other numbers we already had?

img_3447

This student disagreed with the student who gave the responses in the first column because he is determined the white is 1/10 because the orange is 1. Would be great to pair them up and have them come to an agreement.

img_3448

This student is seeing the white value adding to each value above it to get the next. I also love how she writes notes about how neat her handwriting is:)

img_3449

I would love to have them play around with this first pattern in this entry! What other relationships could they find after they explored this one?

img_3450

So much fun! Cannot wait to get into other grade levels to see if I can begin to find a progression of ideas with these rods!

 

My Beginnings With Cuisenaire Rods

I have never been more intrigued with using Cuisenaire rods in the classroom until I started reading Simon’s blog! I admit, I have read and watched his work from afar…not knowing really where to start with them and was afraid to just jump into another teacher’s classroom and say, “Hey let me try out something!” when I really didn’t know what that something may be. However, after Kassia reached out to Simon on Twitter asking how to get started with Cuisenaire rods and Simon wrote a great blog response, I was inspired to just jump right in!

I am a bit of an over-planner, so not having a really focused goal for a math lesson makes me a bit anxious. I am fairly certain I could anticipate what 4th and 5th graders would notice and wonder about the Cuisenaire rods because of my experience in that grade band, however I wanted to see what the younger students would do, so I ventured into a Kindergarten and 3rd grade classroom with a really loose plan.

Kindergarten (45 minutes)

Warm-up: Let’s notice and wonder!

  1. Dump out the bags of Cuisenaire rods in the middle of each table of 4 students.
  2. Tell them not to touch them for the first round.
  3. Ask what they notice and wonder and collect responses.

Things they noticed:

  • White ones looked like ice cubes.
  • Orange ones are rectangles.
  • End of blue one is a diamond (another student said rhombus)
  • Different colors (green, white, orange..)
  • They can build things (which is why we did no touching the first round:)
  • Orange is the longest.
  • They are different sizes.
  • We can sort them by colors.
  • We can sort them by size.

Things they wondered:

  • What do they feel like?
  • What can we make with them?

Activity 1: Let’s Sort!

  1. Tell the students to sort them by size or color. (they quickly realized it was the same thing)
  2. Discuss their sort/organization and check out how other tables sorted.

I was surprised to see not many sorted them into piles because that is normally how they sort things. I am wondering if the incremental size difference between each rods made them do more of a progression of size than sort into piles? Some groups worked together while others like making their own set with one of each color (and size) and keep making more of those!

Activity 2: Let’s Make an Orange!

Since a lot of students kept mentioning that the orange was the longest, I decided to see if they could build some trains (as Simon calls them) that made an orange.

My time was running out, but it left my mind reeling of where I wanted to go next! My inclination is to ask them if they could assign numbers to some of the rods or if they could build some trains the same length as the different colors? I would love to hear which piece is their favorite piece because a lot of them found the smallest cube really helpful when building the orange.

3rd Grade (60 minutes)

Warm-up: Let’s notice and wonder!

Things they noticed:

  • Groups were the same color and length.
  • Blue and white is the same length as the orange rod.
  • Kind of like adding.
  • White is 1 cm.
  • Go up by one white cube every time.
  • Odd + even numbers
  • 2 yellows + anything will be bigger than 0.
  • 1 white + 1 green = 1 magenta

Things they wondered:

  • Is red 1 inch?
  • How long are the rods altogether? (Prediction of 26 or 27 in wide)
  • Is orange 4 1/2 or 5 inches?
  • Why doesn’t it keep going to bigger than orange?

Activity 1: Let’s build some equivalents!

I found 3rd graders love to stand them up more than Kindergarteners:)

Activity 2: Let’s assign some values!

After they built a bunch, I asked them to assign a value to each color that made sense to them…this was by far my favorite part – probably because it was getting more into my comfort zone!

IMG_3396.jpg

Again, time was running out, but next steps I am thinking…

  • What patterns and relationships do you see in the table?
  • What columns have something in common? Which ones don’t have anything in common? Why?
  • What if I told you orange was 1? What are the others?
  • What if orange was 2? What happens then?

Thank you so much Simon for all of inspiration and Kassia for the push into the classroom with these! Reflecting, I was much more structured than Simon and Kassia, but I look forward to a bit more play with these as the year goes on! I look forward to so much more play with the Cuisenaire rods and continuing Cuisenaire Around Ahe World!

Formative Assessment

Assessment always seems to be such a broad, hot topic  There are rubrics to help create assessments, rubrics for reviewing assessments, and tons of reading about the benefit of assessments. While I agree assessment is an important topic of conversation and all of these things can be helpful, I just lose a bit of interest when it becomes so cumbersome. I feel the longer the rubric and steps to create an assessment, the more detached the assessment becomes from student thinking.  This could be completely be my short attention span speaking, however the way assessment is discussed feels either like data (a grade or number-type of data) or a huge process with tons of text in rubrics that I really, quite honestly, don’t feel like reading. Not to mention, I just love looking at student writing and listening to student thinking when planning my immediate next steps (formative) or checking in to see what students have learned over a longer period (summative). This is why I find the work we are doing each month in our Learning Labs such a wonderful way to think about formative assessment in an actual classroom context, in real time.

This passage from NCTM’s Principles to Action really captures how I feel about the work we are doing in our Learning Labs:

Screen Shot 2016-04-06 at 2.43.31 PM.png

In this most recent Learning Lab in 3rd grade, we planned the activity together using the 5 Practices model and reflected after the lesson. Since this blog is always my thoughts about student work, I thought it would be great to hear what the teachers took away from the activities we are doing in terms of the students’ understandings and impact on their future planning, formative assessment.  

The teacher mentioned in the blog said, I was surprised by how quick many of the students defended their responses that 1/2 will always be greater than 1/3, and then proving this response using visual representation of the same whole ( which is an idea that we have made explicit). I was impressed with “skeptics” in the crowd that were looking to deepen their understanding around the concept by asking those “What if” questions.  Going forward, I want to create opportunities that push and challenge my student’s thinking. I want them to continue to question and explore math – especially when it uses the word “always.”

Another teacher who taught the same activity after watching it in action in another classroom said, “I learned that almost half of my students assumed they were comparing the same size wholes.  They agreed with the statement, and each student gave at least two different ways to prove their thinking (area and number line model were most common).  The students that disagreed almost all provided their own context to the problem, such as an example with small vs large pizzas, or a 2 different-length races being run.  I found it so interesting that almost all students confidently chose one side or the other, and were able to defend their thinking with examples (and more than one-yeah!)  I was excited to see that they could be so flexible in their arguments as to why they felt as they did.  Three students responded that they were unsure, and gave reasons to support both sides of the argument. This impacted my instruction by giving me such valuable formative assessment information with a simple, non-threatening prompt.  It took about 5 minutes, and gave me tons of information.  It was accessible and appropriate for all.  Students were comfortable agreeing or disagreeing, and in some cases, saying “unsure-and here is why.”  I was most excited about that!”

She also said, From this activity, I learned that I really needed to revisit the third grade standard to see what is actually expected.  It says they should recognize that comparisons are valid only when the two fractions refer to the same whole.  My statement didn’t have a context, so how cool that some were at least questioning this!   This impacted my planning and instruction by reminding me how thinking/wondering about adding a context to the statement would influence their responses.  I am also reminded that I need to stress that students must consider the whole in order to make comparisons accurately.”

Earlier in their fraction unit, the third grade teachers used the talking point below to hear how her students were talking about fractions. (This work is actually from another teacher’s class, but you get the idea;)

A teacher who did this activity reflected, “From this activity, I learned my students had only ever been exposed to a fraction as a part of a whole (and wanted to strictly refer to fractions in terms of pizza). This impacted my instruction by being sure to have the discussion that fractions can represent parts of a whole, but we can also represent whole numbers with fractions.”

To me, these reflections are what assessment should be….the teachers learn about student thinking, the students think about their own thinking, and what we learn helps us plan future lessons with our students’ understandings in mind!

More examples from different grade levels where the teachers and I learned so much about student thinking that impacted future instruction:

Kindergarten: Adding

Kindergarten: Counting

1st Grade: Fractions and Adding

2nd Grade: Counting and Leftovers

4th Grade: Division

5th Grade: Fraction Number Line

3rd Grade: Comparing Fractions

I was so excited just walking into Jenn Guido’s room today and seeing this awesomeness on the board from the day before:

IMG_2052.jpg

We chatted with the class a bit about their responses on the board before jumping into our Number Talk. One thing Jenn and I both noticed during this chat was the use of the word “double” when talking about equivalents such as 2/4 and 4/8. We had the chance to ask them what exactly was doubling and kept that in the back of our mind as something to keep revisiting. Even in 5th grade, I would hear the same thing being said each year. I would always have to ask, “What is doubling?” “What is 1/2 doubled?” “What exactly is doubling in the fraction?” “What happens when we double the numerator? denominator?”

After this chat, it was time to move into our planned activity. The class has been doing a lot of work with partitioning (and they used that word:) circles, rectangles and number lines so we planned a Number Talk consisting of a string of fractions for the students to compare. We were curious to hear how they talked about the fractions themselves and how they used benchmarks and equivalents. The string we developed was this:

1/6 or  1/8 – Unit Fractions

5/8 or 3/8 – Same Denominator (same-sized pieces in student terms)

3/8 or 3/4 – Common Numerator, Benchmark to 1/2, or Equivalents

3/3 or 4/3 – Benchmark to 1

The students shared their responses and did an amazing job of explaining their reasoning very clearly. In all of these problems and actually in all of their work thus far, they have always assumed the fractions referred to the same whole. We decided to change that up on them a bit and see what they would do with the statement, “1/2 is always greater than 1/3.” We thought the word “always” would make them second guess the statement, but we could not have been more wrong…they all agreed. A few students shared their responses, and it was great to see such a variety of representations.

This student was interesting because he used 12ths, and although he could not articulate why, it was labeled correctly. I am assuming it was because 1/2 and 1/3 could be placed on 12hs, but I am not sure because his reasoning sounds like he is comparing the 1/2 and 1/3 as pieces not in 12ths.

IMG_2071

Jenn, Meghan (another 3rd grade teacher with us in the room) and I chatted while they were working about how to get them to reason about different-sized wholes. A picture would have been a dead giveaway so I just went up and circled the word always and asked, “Does this word bother anyone?” and one lone student said it made him feel like there was a twist. I love those skeptics. I asked them to talk as a table about what the twist could be in this statement, and then we had some great stuff! They talked as tables, and while only two of the tables talked about different wholes (in terms of number lines which was not what I expected either), there was so many great conversations trying to “break the statement.”

This is an example of the number line argument:

IMG_2067

This group kept saying it would be a different answer if they were talking about “1/2 of” or “1/3 of”…then said, “Like 1/3 of 1/2” and THEN KNEW IT WAS 1/6 when I asked what that would be! They said 1/2 is 3/6 so 1/3 of that is 1/6. Wow. Then, of course I could not resist asking what 1/2 of 1/3 would be and they kept saying one half thirds, but could figure out how to write it and then questioned if that could even be right.

IMG_2073

After having the tables share with the whole group, they all agreed the statement should be sometimes instead of always. Jenn asked them to complete two statements…

“1/2 is greater than 1/3 when….”

“1/2 is not greater than 1/3 when…”

IMG_2070

IMG_2076

A great day! We are doing the same thing in Meghan’s classroom tomorrow and are changing the first problem in the string to 1/2 and 1/3 so we can revisit that at the end. Can’t wait!

5th Grade Fraction Clothesline

Today, I had the chance to plan and teach with a 5th grade teacher and it was awesome! Last week, this class had just finished a bunch of 100s grid shading in thinking about fraction/percent equivalencies, so we picked up planning the lesson in Investigations with the fraction/percent equivalent strips. Instead of the 10-minute math activity, we thought it would be really interesting to do the clothesline number line to kick off the class period.

We chose fractions (and one percent I will talk about later) based on the fractions the students had been working with on the grids. We chose fractions based on different comparison strategies that could arise such as:

  • Partitioning sections of the line
  • Distance to benchmarks
  • Equivalent Fractions
  • Common Denominator
  • Greater than, Less than or equal to a whole or 1/2

We settled upon the following cards:

1/4, 3/4, 4/4, 1/3, 4/3, 5/10, 2/5, 100%, 3/8, 1 5/8, 1 7/8, 4/5, 11/6, 1 6/10, 1/10, 9/8, 12/8, 2

To start, I put the 0 toward the left of the line (when you are looking at it) and we practiced with a few whole numbers. One student volunteered to be first and I handed her a card with the number 7. As she walked up, looked around, walked up and down the line, looked at me like I was playing some type of trick on her, we immediately had the conversation about how knowing the highest numbered card would be super helpful. She settled on putting it toward the far right side and had a seat. I gave another student the 10 card. He put that at the far right and adjusted the 7 to be “about 2 cards away” from the 10, leaving a really long distance from 0-7 for them to think about. We had some students disagree so we talked about distance and adjusted the cards to be more reflective of distance. Since the conversation of half of the distance to 10 came up, I handed another student the 5 card and he placed it right in the middle. The discussion went back to the 7 and they decided that since 7.5 would be halfway between 5 and 10 that 7 had to be a little bit less than the halfway of 5 and 10.

Then, we moved into the fraction cards. We gave each pair of student two cards. In hindsight, for times sake, I would probably only do one card per pair. I gave them one minute to talk about everything they knew about the fractions they had and then we started. I asked for volunteers who thought their card would help us get started and called on a boy with the 1 7/8 card. He went up and stood all of the way to the right and said he couldn’t put his on. I asked why and he said that since the cards were all fractions the line could only go to 1 so his is more than one and can’t go on here. I asked if anyone in the class had a card that may help us out and a student with the 2 card raised her hand. She placed her card all of the way to the right, said “maybe it goes to two” and the other student placed it just to the left of it because, “it is only 1/8 from 2.” Awesome!

We went along with the rest of the cards and so many amazing conversations, agreements and disagreements happened along the way. There are a few things that stand out in my mind as some great reflections on the activity:

  1. A student had placed 5/10 halfway between 0 and 1. The next student placed 2/5 just to the left of the 5/10 because, “I know 2 and a half fifths is a half so that means that 2/5 has to be less than 5/10. It is a half of a fifth away.” The NEXT student volunteered and placed 3/8 overlapping just the edge of the 2/5 card on the left. I was expecting percentages to come out, since that was their most recent work with those fractions, however the student said they knew 3/8 was an 1/8 from a half and 2/5 was a 1/10 from a half and an 1/8 and 1/10 are close but an 1/8 is just a little bit further away. Awesome and definitely not what I expected!
  2. I wish I had not put the zero so far to the left. Looking back I am wondering if that instills misunderstandings when they begin their work with negative numbers on a number line similar to the original misconception that launched the activity with the 1 7/8.
  3. Oh, the 100% card….complete mistake on my part, although it may have been a great mistake to have! In the first class, the student with the 100% card came up and said, “I have 100% and that is 100/100 which is 1” and put it in the appropriate place on the line. Just as she did that, I started thinking how I never really thought about the distinct difference between percent in relation to area (like the grids they had been shading) and 100% when dealing with distance on a number line. No one seemed to notice and since I didn’t know exactly what to ask at that point because I was processing my own thoughts, I waited until another student placed 4/4 on top of it and erased it from my immediate view!
    • I stayed for the next class and this time I was prepared for that card and now really looking around to see what students’ reactions were when it was placed. As soon as the student placed it at the 1 location, I heard some side whispers at the tables. I paused and asked what the problem was and they said, “100% is the whole thing.” The next student who volunteered had the 2 card, picked up the 100% card on the way to the right side and put the 2 down and the 100% on top. Lovely and just what I was thinking.

I have never had students reflect on the difference of talking about percentages with distance versus area because I had never thought about it! It definitely feels like an interesting convo to have and a great mistake that I am glad I made!!

IMG_0840

I will be back in another 5th grade class tomorrow and will see what happens…it could make for a great journal writing!

-Kristin