Category Archives: Math

Wondering About Classroom Norms

I cannot count how many times classroom norms has been a topic of my conversations in the past month. From creating and facilitating professional learning to thinking about how a curriculum can offer support in this area, I find myself obsessively thinking about ways in which norms might support both students and adults in their learning.

If you asked me a year ago about the norms in my classroom, I would have felt pretty good about how the list hung proudly on my classroom wall, was collaboratively established by students, and appeared to be in place during their math activities.

1

However, like the majority of my teaching life, the more I learn, the more I realize how much there is still left to learn. In this particular case, it is norms in a classroom.

I think most people would agree that establishing norms is important. Norms can encourage students to work collaboratively and productively in a classroom, elicit use of the Mathematical Practices and help students see learning mathematics as more than just doing problems on a piece of paper.  But, how often do we create norms in our classroom only to complain a month or two later that students aren’t thinking about any of them when working together and we struggle with how to refocus students to keep in mind those things they said were important at the beginning of the year? I know I have been there and looking back, wonder how I could have done that better.

While I think good curriculum tasks, lesson structures, and relationships I had with students helped me a lot in encouraging students to be mindful of the norms in the classroom, I don’t think I put an equal amount of effort into maintaining norms as I did establishing them. With that, I wonder what it even looks and sounds like to maintain them?

To me, maintaining norms is about moving from a poster on a wall to a living and breathing culture in the classroom. But, what things can a teacher do to make the norms not only a list, but a part of their classroom math community?

Of course, as the journey begins on writing the IM K-5 Math curriculum, I am also wondering how a curriculum can support teachers in establishing and maintaining classroom norms in a meaningful way. Even more specifically, what could this look like in Kindergarten when we have the opportunity to influence the way students view learning mathematics?

As I think through these questions, I would love to hear how you think about norms in your math classroom. What things can we do as teachers to support students in thinking more about what it means to learn and do mathematics? How could a curriculum, especially in Kindergarten, help teachers in this process?

Purposeful Warm-up Routines

As a teacher, curiosity around students’ mathematical thinking was the driving force behind the teaching and learning in my classroom. To better understand what they were thinking, I needed to not only have great, accessible problems but also create opportunities for students to openly share their ideas with others. It only makes sense that when I learned about routines that encouraged students to share the many ways they were thinking about math such as Number Talks, Notice and Wonder, and Which One Doesn’t Belong?, I was quick to go back to the classroom and try them with my students. It didn’t matter which unit we were in or lesson I had planned for that day, I plopped them in whenever and wherever I could because I was so curious to hear what students would say. Continue reading

Small Change, Big Impact.

The other day, Jamie tweeted about this example problem from a 4th grade program:

DUuu0UhV4AAw4pa.jpg

After looking at the Standards, Learning Progressions, and discussing the 3rd grade fraction work, all of us on the thread agreed it was an appropriate question for 4th grade but then started to question whether we would give this problem as is, or adapt it. I really appreciate these conversations because they move us beyond ‘this problem sucks, don’t do it’ or ‘do this problem instead, it’s more fun’ to thinking about a realistic thought process teachers can use when working with a text that may not be aligned to the standards or lessons that may not best meet the needs of their students.

While all of the adaptations we discussed sounded similar, I couldn’t help but wonder how each impacted so many classroom things in different ways. What may seem like a small change can easily impact the amount of time it takes in class, students’ approaches to the problem, what we learn about student thinking, and the follow-up question we could potentially ask.

There is no right or wrong adaptation here, but I wanted to sketch out how each change to the problem impacts teaching and learning.

Change 1: Remove the context and only give the expression 1 – 26. 

This would be the quickest way to do this problem in class. With this change, I would be curious to see how students think about 1 in the expression.

Do they record it as 66? Do they draw a diagram? If so, what does it look like? How is it partitioned? Are the pieces removed in the diagram or is there work off to the side? A potential follow-up could be to ask students to write a context to match the expression. I think in their contexts I would have the opportunity to see how they thought about 1 in a different way.

Change 2: Remove the expression and only give the context. 

I find anytime there is a context it takes a bit longer because of the time to read and reread the problem so this change would take a bit more class time than the first. This change would give students more access to the problem and I could possibly learn how they make sense of a context, but I wonder what I would learn about their fractional thinking. Since the context pushes students to think about 1 as the whole pizza and also tells them that there are 6 equal pieces, the diagram, partitioning, and denominator are practically done for them.

Because of this, I may not learn if they know 1 is equivalent to 6and may not find out how they represent fractions in a diagram because I imagine most would draw a circle. Since they could do the removal on the circle, I also wonder if I would learn much about how they saw this problem as an expression so I would add that as my follow-up question.

Change 3: Remove the expression and the numbers from the context.

This one ​would definitely take an entire class period as a numberless word problem and probably the longest to plan. Because it takes the longest to plan and implement I really have to think about what I learn above and beyond the two changes previously mentioned if I were to do it this way.

I imagine the scenario could sound like this:

“Sam ordered a pizza cut into equal pieces. He ate some of the pizza and put the rest away for later.” or “Sam ordered a pizza. He ate some of the pizza and put the rest away for later.” 

When I do a numberless problem, my goals are to give students access to the problem and see how they make sense of a context without the numbers prompting them to feel like they have to do something. I have to plan for how I craftily find the appropriate time to let them notice and wonder and plan questions that elicit the subtraction from 1 that I hope to see. I also like to give students a chance to choose their own numbers for problems like these in order to see how they think about the reasonableness of numbers, which adds more time. The hardest part here is getting to the fraction work because I think students could stay in whole numbers as they talk about number of pieces. I can hear them wondering how many pieces it is cut into and how many he ate – neither of which guarantees fractions. So, while this has the potential to get at everything Change 1 and 2 do, a teacher must weigh how much the making sense of context portion meets the needs of his or her students.

All of this for one problem and I haven’t even discussed the two most important questions we need to ask ourselves before even making these changes – what understandings are students building on? and what understandings are students building towards?

There is much to think about in planning that is often hard to think about all of the implications of one tiny change to a task, however, thinking about how each of these changes impacts teaching and learning is the fun and exciting part of the work!


After the post, Brian had another change that he posted on Twitter! I wanted to capture it here so it is not lost in the crazy Twitter feed:

 

Fraction Division and Complex Fractions

It is posts like Lisa’s most recent one that make me long for more collaboration K-12. I have to admit, when I saw her Twitter post with the words pre-calculus and simplifying complex fractions, my inclination was to skim right by because I would not understand the post anyway. Literally, my only recollection of simplifying complex fractions like the one at the beginning of her post is through a set of procedures I was explicitly taught step by step. However, when I looked at the accompanying image that showed fraction division, I was curious how my understandings of fraction division connected to her pre-calculus work.

I loved reading Lisa’s process of making the math accessible for her students because I am sure many would have felt like I did if shown the CPM opener from the very beginning. It is that same process of thinking about what students know and how we can build on it that made me get out my journal and start sketching out connections I was making as I read. In no time, my journal was full of problems, diagrams, concepts, questions and every tab on my computer referenced the progressions, standards, references linked in Lisa’s post, and a blank email to Kate and Ashli to jot down my questions for them about the math. Talk about a wonderful rabbit hole to be going down.

The more I read and reread this post, the more I think it could lead to many more posts connecting how students are introduced to ideas in elementary school, the impact it has on later work, and the questions I have as I go. My questions revolve around not only the math, but also how these mathematical ideas build, how our representations impact student understandings, and how there are times when a problems lends itself to one way of thinking versus another.

During my first read, two things I wondered were:

  1. How does the way the fractions are written impact the way I think about them?
  2. What happens when I have two ways of thinking about fractions and two ways of thinking about division?

How does the recording of the fractions impact the way I think about them?

As the post progressed from an image of a complex fraction to one of fraction division, I felt like Lisa must have felt, wondering what students may know about the complex fraction and why they may struggle. My initial thought was they may not understand that a complex fraction is even division. This may not be the case for most, however based on what I remember from high school, I saw complex fractions as one thing I did operations on. As an elementary school teacher, it seems similar to the difference between seeing a fraction as a number (introduced in 3rd grade) versus seeing fraction as division (introduced in 5th grade).  As I looked at CPM’s complex fraction and how it was written, I only thought about it as multiplying the numerator by the reciprocal of the denominator because of how I was taught. However, when I looked at the fraction division problem written horizontally, I found myself attending more to each fraction as a number, using what I know about division to find the quotient. Less intimidating to me solely because of the way it was written on the paper.  I wonder if this compares a bit to how we record computation problems horizontally versus stacked during number talks to encourage thinking about a problem versus always relying on the algorithm?

I know the fraction division problem means the same thing written either way, but how they are written impacts my thinking a lot. From an elementary perspective where we spend so much time attending to developing understanding of fraction as a number, I am not inclined to really think about what it means to divide the two terms when written as a complex fraction. To that end, I wonder if the opening problem written one way versus another evokes a different meaning for some students?

Screen Shot 2017-11-26 at 1.52.26 PM.png

Knowing that there are things to be learned in between the problems listed below, but in terms of seeing the complex fraction as division where I think about the individual pieces as things in their own right, is one possibly a small transition to the other for me or students like me?

Screen Shot 2017-11-26 at 5.41.14 PM.png

Lisa – I would love to hear more about the transition prompt between the fraction division problems the students were solving and the CPM problem. I think that is a really important piece of what you did so beautifully in this lesson.

What happens when we have two ways of thinking about fractions and two ways of thinking about division?

I think about fractions in the two ways I mentioned above: as a number and as division.

I think about division in two ways: how many groups? and how many in each group?

First, fractions: In 3rd grade, students learn a fraction is a number in which the numerator indicates the number of pieces and the denominator (as the denominator of a unit fraction) represents the size of the piece. For example, we say 3/is 3 pieces the size of 1/4. This understanding and associated language are so beautiful when students use it to compare fractions and create equivalent fractions. In my 5th grade class, my students were comfortable using complex fractions such as1/2 / when talking about 1/6 because they were thinking ½ a piece the size of ⅓ is . No division, just reasoning about the pieces and their size. When comparing 4/9 to 5/7, students would use the reasoning that four and a half ninths and three and a half sevenths are equivalent to a half so 5/7 is more than a half and 4/9 is less than a half. I saw a glimpse into how that thinking was not helpful when they asked what happened when there is a fraction in the denominator. This is where understanding fraction as division would have been more helpful. 

In 5th grade students also learn about fractions as division. In terms of sharing situations, they learn that 5 things shared by 3 people results in each person getting 5/3 of the things or 5 divided by 3. In these situations, thinking about 5 pieces the size of 1/3 is not particularly helpful in solving, but division is. However, when it comes back to interpreting the solution, 5 pieces the size of 1/3 is needed.

Questions I am thinking about at this point:

  • How does the complex fraction in the post relate to either or both of these ways to think about fractions?
  • How does the way we represent fraction division relate to one or both of these ways to think about fractions?

Now, division: In 3rd grade, students learn division in two contexts: how many in groups and how many in each group.  In 5th grade, students use those understandings to divide whole numbers by unit fractions and unit fractions by whole numbers. Those two meanings of division carry into middle school to divide fractions by fractions and conceptually understand the reason we multiply by the reciprocal.

After reading Kristin and Bill’s series of posts on fraction division, I am now constantly thinking about how the context (interpretation) for division impacts the way students represent and solve a problem. I know changing the way I think about the division context changes how I represent the problem as well as how I operate with the reciprocal.

Questions I am thinking about at this point:

  • Does one context of division connect more closely with the CPM complex fraction problem?
  • Does the visual fraction model of the the division problem impact the way students approach the complex fraction problem?
    • Is an array representing both fractions being divided helpful in this complex fraction?
    • Is one bar model representing both fractions on one helpful in this complex fraction?
    • Is one way of representing it more helpful than the other?

Obviously, I have a lot to read about how a problem such as the one Lisa posed progresses after middle school but after seeing the division of fraction problem,  I am even more intrigued to see how these ideas progress from the time they are introduced. I am so curious when certain ways of thinking are more helpful than others and how we can construct learning experiences that help all students have access to the mathematics in a lesson in the way Lisa did.

CCSSMashup – Fractions

I never tire of conversations about the 3rd – 5th grade fraction progression because after each one, I leave with the desire to reread the Standards and Progressions with a new lens.

A few weeks ago, a conversation about 3rd grade fractions sent me back to the Standards with a #pairedtexts type of lens. Unlike the hashtag’s typical MO of pairing contrasting texts, I was looking for standards that connected in a meaningful, but maybe unexpected way. By unexpected, I don’t mean unintentional, I mean the two standards are not necessarily near-grade or in the same strand, so the connection (to me) is not as obvious as one standard building directly toward another.

The conversation focused on this standard:

Screen Shot 2017-10-12 at 3.01.16 PM.png

With that standard in mind, imagine a 3rd grade student is asked to locate 3/4 on a number line on which only 0 is marked.

I expect a student would mark off the 1/4’s starting at 0 and write 3/4 above the point after the third 1/4 segment. What exactly is the student doing in that process?

Is the student adding?

Is the student counting?

Is the student doing both?

How does adding and counting look or sound the same in this scenario? different?

This is where I find pairing two standards fun and interesting to think about because it demonstrates how important seemingly unrelated ideas work together to build mathematical understandings. It is also really fun to think about how a standard in Kindergarten is so important for work in grades 3-5 and beyond.

In this scenario, I think we instinctively believe students are adding unit fractions when asked to place 3/4 on the number line because the standard is in the fraction strand and therefore we consider all of the work to be solely about fractions. We also sometimes impose our thinking on what students are actually doing in this task. For example, you could imagine the student marking off the fourths, stopping after the third one, writing 3/4 and say the student was adding 1/4+1/4+1/4 to get to the 3/4 because they moved along the number line. If this is the case, then the standard would pair with this 4th grade standard:

Screen Shot 2017-10-12 at 3.36.21 PM.png

Don’t get me wrong, those standards definitely pair as students move from 3rd to 4th grade, however, since the scenario is about a 3rd grade student, pairing it with a higher grade level standard doesn’t seem to make sense in terms of what students are building on. Right here, it is really interesting to pause and think about how building fractions from unit fractions, locating a fraction on a number line, and adding unit fractions are slightly different things a progression.

When I think about the student locating 3/4 in 3rd grade, I hear counting (with a change in units) and would pair that 3rd grade standard with this Kindergarten counting and cardinality standard:

Screen Shot 2017-10-14 at 8.58.36 AM.png

However, because the 3rd grade work is on a number line and the arrangement and order does matter, I would have to add this 2nd grade measurement standard into the mix, but take off the sum and differences part:

Screen Shot 2017-10-12 at 3.35.21 PM.png

So, instead of a #pairedtext, I now think of it more as a #CCSSMashup to create this standard:

Screen Shot 2017-10-14 at 8.59.26 AM.png

With that mashup in mind, I went back to the progressions documents to look for evidence and examples of this.

In the 3rd Grade NF Progression these parts jumped out at me as being representative of this standard mashup:

The goal is for students to see unit fractions as the basic building blocks of fractions, in the same sense that the number 1 is the basic building block of the whole numbers; just as every whole number is obtained by combining a sufficient number of 1s, every fraction is obtained by combining a sufficient number of unit fractions.

The number line reinforces the analogy between fractions and whole numbers. Just as 5 is the point on the number line reached by marking off 5 times the length of the unit interval from 0, so 5/3 is the point obtained in the same way using a different interval as the basic unit of length, namely the interval from 0 to 1 /3 .

There is also a great “Meaning of Fractions” video on the Illustrative Mathematics site that explains this idea with visuals.

There are so many of these great mashups in the standards, especially in the fraction strand, that I find incredibly helpful in thinking about how students coherently learn mathematics.

I look forward to hearing your favorite #CCSSMashup!

Explicit Planning vs Explicit Teaching

Planning is like…..

How would you finish that sentence?

As a facilitator, I use this sentence starter to open Illustrative Mathematics’ 5 Practices Professional Learning. To be completely honest, when I designed the PD I was a little hesitant of using it because I was nervous it was opening a can of worms within the first 5 minutes of the day.  I am, however, always surprised with all of the beautiful analogies participants share and feel challenged each time to come up with something new and better than the one I used in previous sessions. When I first delivered this PD, I started with analogies like a marathon or really hard workout – something that is exhausting, a lot of work, but ends with something I take pride in. While these analogies were accurate representations of how hard I think lesson planning truly is, I was continually unhappy with where students’ ideas fit into my analogy.

My most recent sentence was this…

Planning is like putting together a puzzle. 

When sharing my reasoning with participants for the first time, I included a lot of beautiful words around mathematical connections but in the middle somewhere I used the phrase “making connections explicit” in relation to the puzzle pieces and saw an immediate reaction from a few people in the room. Of course, I had to pause and ask, “Was it the word explicit?” – answered by many nods in the room.

For a long time, the word explicit in relation to teaching held a negative, cringe-worthy connotation for me as well. If ever asked to paint a picture of what explicit teaching looks like in the math classroom, I would describe scenarios in which a teacher is either at the board telling students how to solve a problem or showing a struggling student how to solve a problem because they are stuck or “taking the long way there.” To me, being explicit meant telling students a way to do something in math class – typically in the form of a procedure.

Through teaching a problem-based curriculum [Investigations], designing and implementing math routines such as number talks, and reading Principles to Actions5 Practices and Intentional Talk , I realized that I was guilty of making mathematical ideas explicit every day in my classroom, but not in the way that made me cringe.

I was explicitly planning, not explicitly teaching.

To me, those two phrases indicate a big difference in how I think about structuring a lesson. I have found when teaching a problem-based curriculum, it is easy for ideas to be left hanging and important connections missed, forcing me to explicitly teach an idea to ensure students “get it” before they leave the class period without any understanding of the mathematical goal for the day. Many days, I would find myself frustrated because students would completely miss the point of the lesson, however now I realize this was because I was expecting them to read my mind of what I wanted them to take away from the problem. On the flip side of that coin, however, not teaching a problem-based curriculum and explicitly teaching students how to do the math in each lesson is not an option (and is a topic that could be its own blogpost).

This is exactly why I find the 5 Practices framework invaluable in planning. The framework forces me to continuously think about the mathematical goal, choose an activity that supports that goal, plan questions for students toward the goal, and sequence student work in a way that creates a productive, purposeful discussion toward an explicit mathematical idea. I have learned so much using this framework over and over again in planning for my 5th grade class, collaborating with other teachers and coaching teachers across different grade levels.

Explicit planning is how I would describe the new, open education resource (OER) by Illustrative Mathematics. As a part of the writing team, I explicitly planned warm-ups such as number talks and notice and wonder activities to elicit specific mathematical ideas that play a purposeful role in the coherent plan of the lesson and unit. But not only are the warm-ups explicitly planned, but each lesson and unit tells a mathematical story in which students arrive at a specific mathematical landing point. While they may not all arrive at that landing in the same way, the problems and discussions are structured to ensure students do not leave the work of the day without any idea of what they were working toward.

While I would love to think my blog posts paint a clear picture of explicit planning, I am not that naive. So, what does explicit planning look like in a 5 Practices Framework?

This lesson from Grade 7, Unit 2, Lesson 2 from Illustrative Mathematics’ Middle School Curriculum is one of many in the curriculum. (All images are screenshots from the online curriculum that is linked at the bottom of the post)

Practice 0: Choosing a Mathematical Goal and Appropriate Task

Screen Shot 2017-08-25 at 10.13.27 AM.png

Lesson Learning Goals

With the goals in mind, the lesson begins with a notice and wonder warm-up that engages students in thinking about tables, followed by two activities that build on those ideas and support the mathematical goals. While both activities demonstrate explicit planning, I am focusing on one for the sake of space.

Screen Shot 2017-08-24 at 10.29.24 PM.png

Task Statement

 

Practice 1 and 2: Anticipating & Monitoring

Screen Shot 2017-08-24 at 10.42.08 PM

Activity Narrative

 

Practice 3 & 4: Selecting & Sequencing

Screen Shot 2017-08-24 at 10.43.59 PM

Activity Synthesis

 

Practice 5: Connecting

Screen Shot 2017-08-24 at 10.52.01 PM

Activity Synthesis

 

So..Planning is like putting together a puzzle. It is hard, takes time, and is sometimes difficult to figure out where to start. We know all of the pieces connect in the end, but making a plan for all of those pieces to connect takes an understanding of the final picture – the goal. There will be missteps along the way and some parts will take longer than others, but we know it is important to carefully connect each piece to another as one missing piece will leave unconnected ideas and the final picture unfinished. As you work alone, the way the pieces connect to form the final picture may not always be obvious, but as others help us see the pieces in different ways during the process, connections become explicitly clear and the final picture is something in which you can take a lot of pride.

The ‘others’ in my teaching journey have helped me see a difference between explicit teaching and explicit planning. Through explicit planning I have seen the importance in understanding the mathematical goal in a way that enables me to structure activities and lessons that enable students to make important mathematical connections through their own work and discussions. It is so exciting to see IM’s curriculum be a model for how I think about explicit planning in such a coherent, purposeful progression.

Link to Illustrative Mathematics 6-8 Math Curriculum.

Link to the 7th Grade lesson featured in this post.

Number Talk: Which Numbers Are Helpful?

I think Number Talks are such a powerful routine in developing students’ fluency and flexibility with operations, but maybe not for the reason most think. One of the most highlighted purposes of a Number Talk is the ability to elicit multiple strategies for the same problem, however, an even more important goal for me during a Number Talk is for students to think about the numbers they are working with before they begin solving. And then, as they go through their solution path, think about what numbers are helpful in that process and why.

The struggle with trying to dig deeper into that thinking is simply, time. If the opportunity arises, I ask students about their number choices during the Talk but often students just end up re-explaining their entire strategy without really touching on number choices. Not to mention the other 20ish students start losing interest if they take too long. I do think it is a particularly tough question if students are not used to thinking about it and when the thinking happens so quickly in their head, they don’t realize why they made particular choices.

Last week in 2nd grade I did a Number Talk with two problems, one addition and one subtraction. During the addition talk, I noticed students using a lot of great decomposition to make friendly numbers (the term they use to describe 10’s and 100’s).

IMG_4374

During the subtraction problem, I saw the same use of friendly numbers, however in this one I actually got 100 as an answer. My assumption was because the student knew he was using 100 instead of 98, but got stuck there so went with 100 as the answer. I was really impressed to see so many strategies for this problem since subtraction is usually the operation teachers and I talk endlessly about in terms of where students struggle. I find myself blogging on and on about subtraction all of the time!

IMG_4373

When the Number Talk ended, I looked at the board and thought if my goal was to elicit a lot of strategies, then I was done – goal met. However, I chose the numbers in each problem for a particular reason  and wanted students to dig more into their number choices.

This is where I find math journals to be so amazing. They allow me to continue the conversation with students even after the Number Talk is finished.

I went back to the 100, circled it and told the class that I noticed this number came up a lot in both of our problems today. I asked them to think about why and then go back to their journal to write some other problems where 100 would be helpful.

Some used 100 as a number they were trying to get to, like in this example below. I really liked the number line and the equations that both show getting to the 100, but in two different ways.

IMG_4434

This student got to 100 in two different ways also. I thought this was such a clear explanation of how he decomposed the numbers to also use 10’s toward the end of their process as well.

IMG_4435

This student used the 100 in so many ways it was awesome! She got to 100, subtracted by 100 and adjusted the answer, and then added up to get to 100.

IMG_4428

While the majority of the students chose to subtract a number in the 90’s, this student did not which I find so incredibly interesting. I would love to talk to him more about his number choices!

IMG_4432

I didn’t give a clear direction on which operation I wanted them to use, so while most students chose subtraction because that was the problem we ended on, this one played around with both, with the same numbers. I would love to ask this student if 100 was helpful in the same or different way for the two problems.

IMG_4433

As I said earlier, this is a really tough thing for students to think about because it is looking deeper into their choices and in this case apply it to a new set of numbers. This group was definitely up for the challenge and while I love all of the work above, these two samples are so amazing in showing the perseverance of this group.

In this one, you can see the student started solving the problem and got stuck so she drew lines around it and went on to subtract 10’s until she ran out of time. I love this so much.

FullSizeRender 7

This student has so much interesting work. It looks as if he started with an addition problem involving 84, started adding, then changed it to subtraction and got stuck.

IMG_4436

This is what I call continuing the conversation. They wrote me notes to let me know Hey, I am not done here yet and I am trying super hard even though there are mistakes here. That is so powerful for our learners. So while there was no “right” answer to my prompt, I got a glimpse into what each student was thinking after the Number Talk which is often hard to do during the whole-group discussion.

If you want to check out how I use journals with other Number Routines, they are in the side panel of all of my videos on Teaching Channel. 

The Equal Sign

True or False?

5 = 5

5 = 4 + 2

2 + 3 = 1 + 4

After reading so much about the meaning of the equal sign and equality in books such as Thinking Mathematically and About Teaching Mathematics , I anticipated students may think each was false for different reasons…..

5 = 5: There is no operation on the left side.

5 = 4 + 2: The sum comes first or 4+2 is not 5.

2 + 3 = 1 + 4: there is an operation on both sides or because 2+3 =5 (and ignore the 4) or because 2+3+1 ≠ 4.

While I anticipated how students may respond, I was so intrigued by the number of students (probably about 75%) that said false for 5=5. They were about split on the second one, but for many reasons – not many of them being that 5 ≠ 6. The final one left many confused, in fact one student said, “Well now you are just trying to confuse people by putting two plus signs.” So cute.

As they explained their reasoning, my mind was reeling….

  • What questions do I ask to get them to:
    • Think about what the symbols mean?
    • Talk about what is the same?
    • Realize the equal sign in the first one is not a plus sign, so there is no answer of 10?
    • See the equal sign to not mean “the answer is next”?
    • What wording do I use for the equal sign?
      • “The same as” felt wrong because the sides do not look the same in both cases….so, is “Is the same amount” a helpful way for them to think about it?

I got back to my room and starting thinking about what learning experiences would be helpful for students in building their understanding of the equal sign? I talked through it with some colleagues at school and reached out to those outside of school, I needed some serious help!

I started playing around with some cubes and realized how interestingly my thinking changed with each one. I didn’t take a pic of those cubes so I recreated them virtually to talk thru my thinking here.

The first set represents 5 = 5. I can see here where “the same as” works for the equal sign because there are 5 and they are all yellow. But what if I put 5 yellows on the left and 5 red on the right? Then they are the same quantity, but do not look the same.

The second set represents 2+3=5 and is definitely the one students are most comfortable seeing and representing as an equation. It looks and feels like composition to me so I can definitely see why student think the equal sign means “makes” or “the total is.” It looks like 2 and 3 more combine to make 5.

Something interesting happened with the green set. I made two sets of 5 and then broke one set to make the right side – felt like decomposition. I can see why it would feel differently to students. I also realized that when I look at them, I look left to right and much of that lends itself to the way I was thinking about what was happening.

The last set I made by taking my 2 sets of 5 connected cubes and breaking each set differently. Again, “the same as” doesn’t work for me here really well either because they don’t look the same.

Screen Shot 2017-04-26 at 6.27.05 PM.png

Still thinking of next steps because I always like to put context into play with these types of things, but I am finding that very difficult without forcing the way students represent their thinking which I don’t want to do.

Right now, things I am left thinking about before planning forward:

  • What do students attend to when we ask if things are the same?
  • Our language and recording is SO incredibly important.
  • How can these ideas build in K-1 to be helpful in later grades?
  • If I am thinking of moving students from a concrete to more abstract understanding, how does that happen? Is it already a bit abstract in the way the numbers are represented?
  • Do we take enough time with teachers digging into these ideas? [rhetorical]

I look forward to any thoughts! So much learning to do!

 

1st Gr Number String: Missing Number

Yesterday, I wrote a quick post as I was trying to decide which of two number talks I should do with a 1st grade class. I got some great feedback and went with the first one in the post! It was amazing and completely evident that the teacher, Ms. Williams, does a great job asking students to share their thinking regularly. The students were so clear in explaining their reasoning and asking questions of one another.

The first problem drew out exactly what I was hoping and more. One student shared counting on and a few students shared how they decomposed the 4 and added 2 and then 2 more. I was not expecting the use of a double, but two students used 8+8 in their reasoning. The use of their “double fact” reminded me of the solving equations conversations I have with Michael Pershan but in a much more sense-making way than I personally think about it. The students said they “knew 4 and 4 made 8 so they took 4 away and that changed the answer.” I tried to get out of them that they subtracted the 4 from the 16 as well, but it just made sense to them the 16 changed to 12 because he subtracted 4 from the 8. I am so glad I videoed this talk because I want to talk more about it after I re-watch it!

The second problem was as tricky, as I anticipated, and split the class between the answers 1 and 9. The students seemed very used to having the difference on the lefthand side of the equal sign which is great, but some still wanted to add 1 to the 4 instead of subtract the 4 from the missing number. I moved on to the final question because we were at a bit of a standstill at this point. Hindsight, I wish I did that problem last, but I had them journal about it after the talk.

IMG_4191

The final problem, which I wish was my first problem – what was I thinking in this order? – was great! They decomposed the 5, made 10 and talked their way through the two incorrect responses.

IMG_4192

I asked them to journal about the second problem when we finished. The prompt was to explain which answer, 9 or 1, they thought it was and why. Here are few examples:

IMG_0133.jpgIMG_0121.jpgIMG_0122IMG_0128IMG_0120IMG_0123.jpg

I think I would love to post the following string (all at once) on the board to start tomorrow’s lesson:

? – 4 = 5

5 = ? – 4

? + 4 = 5

5 = ? + 4

Ask what the question mark is in each one and which equations seem most similar.

Such a great day in 1st grade!

 

True or False Multiplication Equations

Today,  I was able to pop into a 3rd grade classroom and have some fun with a true or false equation routine! This routine has become one of my favorites, not only for the discussion during the activity, but more for the journals after the talk. I haven’t figured out quite how to use them with the students, but it gives me such great insight into their understandings that I would love to think about a way to have students reflect on them in a meaningful way.  I keep asking myself, what conjectures or generalizations could stem from this work?

I started with 4 x 3 = 3 + 3 + 3 + 3 to get students thinking about the meaning of multiplication and how we can solve for a product using repeated addition. I followed 6 x 4 = 8 + 8 + 4 to see how students talked about the 8’s on the right side. They could explain why it was false by either solving both sides or reasoning about the 8’s as two 4’s in some way.

My final problem was the one below, 8 x5 = 2 x 5 + 2 x 5 + 20. I chose this one because I wanted students to see an equation with multiplication on both sides. Up to this point, I structured them to be multiplication on one side and addition on the other.  There was a lot of solving both sides – I think because of the ease of using 5’s – but, as the discussion continued the students made some really interesting connections about why the numbers were changing in a particular way. I really focused on asking them, “Where do you see the 8 and 5 in your response?” to encourage them to think relationally about the two sides.

IMG_4181.jpg

I ended the talk with 8 x 6 = and asked the students to go back to their journals and finish that equation to make it true.

Some students knew it was equal to 48 right away and started writing equations that were equal to 48. For this student I probably would ask about the relationship between each of the new equations and 8 x 6.

IMG_0114

There are so many interesting things in the rest of them, that I am not sure what exactly to ask student to look at more deeply.

In all of them, I see…

  • Commutative property
  • Multiplication as groups of a certain number
  • Distributive property
  • Doubling and halving & Tripling and thirding

IMG_0103IMG_0104.jpg

IMG_0109IMG_0117IMG_0110

The student below shared this one with the class during the whole class discussion:

8 x 6 = 7 x 10 – 3 x 10 + 2 x 4

From her explanation, she could explain how both sides were 48, but when I asked her how it related to 8 x 6, her wheels started spinning. You can see she played all around her paper trying to make connections between the two. That is the type of thinking I want to engage all of the students in, but based on their own personal journal writing – but what is the right prompt? “Where is one side in the other?” or “How are they related?” <—that one feels like it will lead to a lot of “They are both 48” so I need a follow up.

IMG_0116

I actually left the room thinking about how I would explain how they two sides were related – in particular looking for either 8 groups of 6 or 6 groups of 8 on the right side. I found it was easier for me to find six 8’s, but now want to go back and find eight 6’s for fun. I can see how this could be so fun for students as well, but there is a lot of things going on here so I wonder how to structure that activity for them? Would love thoughts/feedback in the comments!

FullSizeRender.jpg