Category Archives: 3rd Grade

Leveraging Digital Tools for Problem Posing

I have blogged a few times about problem posing using print materials and lately I’ve become really interested and excited about the potential for digital tools in this work!

If you are new to problem posing, below are a few slides from Jinfa and my NCSM presentation for background – each image is linked to an associated research paper.

What is problem posing?

Many activities can easily be adapted to provide opportunities for problem posing by removing task questions (left) and replacing it with different prompt options (right).

How can digital tools enhance problem-posing experiences?

Being relatively new to both problem posing and digital lessons, I have learned so much trying things out in math classes this year. As always, the more I learn, the more questions/ideas I have. Below are two digital lessons that involve different flavors of problem posing.

Lesson 1: Our Curious Classroom

You can click through the lesson screens to see the full flow, but in a nutshell, students answer questions about themselves and explore different data displays.

After answering the first survey question, we asked students for problems they could answer about their class data and recorded their responses (sorry for the blurry image, I had to screenshot from a video clip:).

The students then worked at their table to answer the questions based on their choice of display.

The lesson continues with more survey questions, data display exploration, and ends with students personalizing their own curioso character (see bottom of post for unrelated, cute idea).

Things I learned:

  1. Student responses can be collected and displayed so quickly with digital which saved us more instructional time for posing and solving problems.
  2. The capability to see data displays dynamically change from one to another enhanced the discussion about which display was most helpful to answer the problems and why.
  3. Students were so motivated to answer questions about themselves, learn about their classmates (audio clip below), and ask and answer questions about their own class, not a fictitious one.
“What did you like about the lesson?”

Things I wonder:

  1. While having the teacher record the questions on the board worked perfectly, I wonder if or how younger students might digitally input their own questions w/o wearing headphones for voice to text or having spelling errors that are challenging for others to interpret? Maybe something like a bank of refrigerator magnets to choose from?
  2. During the lesson, could the teacher input student questions onto cards in the Card Sort in Desmos so they could then sort the problems based on structure before solving?

Lesson 2: Puppy Pile

In this lesson, students generate a class collection of animals, are introduced to scaled bar graphs, and create scaled bar graphs. This one has a different problem-posing structure than the the first lesson which was interesting!

In this lesson, students use the Challenge Creator feature. In order to pose their problem to the class, students create their own set of animals (left) and then select a scale and create a bar graph (right).

After submitting their challenge, students then pick up one another’s problems and solve them.

Things I learned:

  1. Students were extremely motivated to create their own problems and solve the problems of others.
  2. This version of problem posing allowed students to have more control over the situation around which they were formulating problems, which they really enjoyed.
  3. Challenge Creator is an amazing tool for repeated practice that is MUCH more engaging than a worksheet of problems.

Things I wonder:

  1. How could this activity structure support or extend the problem posing experience in Lesson 1?
  2. What other K-5 math concepts would be great candidates for a Challenge Creator problem-posing activity?

Final thoughts

I think problem posing is such an important instructional structure whether done in print, digital, or a hybrid of the two. It is important, however, to also consider the math, student motivation, and amount of time students spend engaging in the problem-posing process when choosing the format we use.

I would love to hear about what you try, learn, and wonder whether you try these lessons or adapt other lessons for problem posing!

Unrelated by Adorable Idea…

After Lesson 1, Katie printed out their personalized Curiosos for the wall;)

Gallery Walks: Engaging Students in Other’s Ideas

One instructional strategy that I love for collaboration and public sharing of student ideas is a gallery walk. In a gallery walk, students create displays of their thinking on chart paper or white boards and then the small groups walk around the room and visit each other’s posters. And even though students create such beautiful displays of their ideas, it is always challenging for me to structure the walk in a way that actively engages them in one another’s ideas. Like any problem of practice, it takes trying out new ideas to see what works, when, and for whom.

The Lesson

Last week, it was the first 3rd grade lesson about division. We decided to launch by mathematizing Dozens of Doughnuts to set the stage for the subsequent activities. If you haven’t read the book before, it is about a bear named LouAnn who keeps baking 12 doughnuts to share with a different number of guests who arrive at her door. We read the book and did a notice and wonder, anticipating we would hear something about LouAnn sharing doughnuts and the number of doughnuts, friends, or plates, which we did.

Student Displays

We then asked small groups to record all they ways that LouAnn shared her doughnuts. We purposefully didn’t specify the representation so they could look for different ways during the gallery walk.

As we walked around it was great to see the various ways students were representing the situations, but some small groups seemed to have settled on only one way. We had planned for them to look for similar and different ways during the gallery walk, but that can be so passive, with no opportunity for them to connect those new ideas to their work. So, instead of waiting for the gallery walk at the end, we decided to engage them mid-activity with each other’s ideas and allow time for them to use those ideas.

Taking a page from Tracy’s book, Becoming the Math Teacher You Wish You Had, we opted for a Walk-Around to cross pollinate ideas. We asked students to walk around and look for ideas they wanted to add to their poster. These could be new ideas or just a different way of representing an idea they already had.

You would have thought we gave them a chance to ‘cheat’ as they walked around with such intention to other’s posters. I wish I had captured the before and afters of all of their posters, but here are just a few where you can see the new addition of ideas.

After they finished adding to their posters, we paused to discuss the ideas they found from others – both new ideas they hadn’t thought about and ideas they had, but were represented in different ways.

Next Activity

Students then independently solved a few problems. It was great to see the variation we saw on the posters in their work. So many great representations to share and connect in future lessons!

More Ideas and Resources

Want to learn more about mathematizing? Check out Allison and Tony’s book, Mathematizing Children’s Literature.

Want to read more mathematizing blog posts? I have written about some of the books I used when coaching K–5.

Want to share your children’s book ideas for math class? Join me on IG!

Students’ Brilli-ANT Connections in Math Class

This past week we planned for a 3rd grade lesson on arrays. The curriculum lesson goal was for students to build and describe arrays, in particular connecting the array structure to their understanding of multiplication as equal groups. The first activity in the lesson was written to encourage this connection, however having taught this lesson in previous years, we knew that the workbook examples could have come from students if we gave them the chance. Since we are always looking for ways to better amplify and leverage student thinking, we made some significant adaptations.

The original lesson

Learning goal: Build arrays with physical objects and describe them in terms of multiplication.

We decided that that the diagrams and questions in activity 1 (left image) would easily come from students’ prior understandings and experiences if we launched with a context that encouraged array thinking. Once we did that, it was then about selecting which problems in activity 2 (right image) we wanted to use. We figured we could do that on the fly depending on student work and our timing.

Adaptations

New Learning Goal: Make connections between multiplication as equal groups and arrays.

We read 100 Hungry Ants to open the lesson and asked students to mathematize the situation in a notice and wonder.

The notice and wonder elicited all the ways the ants rearranged themselves which was the perfect launchpad into the activity.

Each student had a cup of 30 ‘ants’ (beans) and a sheet of graph paper if they wanted to use it. We asked them to organize the ants into 4 groups of 6 and then captured pictures of student work to share and connect. They did not disappoint! They built the same images and made the exact connections as Activity 1, however in this version, students got to decide on the arrangement based on their understandings and experiences.

We first shared a picture of discrete groups next to an array and asked how they were the same/different and where the 4 and 6 were in each. Then, we shared arrays with 4 rows of 6 and 6 rows of 4 and discussed the same questions.

At this point we could have used Activity 2 problems, but decided that since they already have 24 counted out we could save time counting out a new set by just asking them to arrange the 24 ants in a different way. We wrapped up the lesson by asking students to write multiplication equations they used today when arranging 24 ants. It was a beautiful lesson.

Takeaways

While this is one really specific example of adapting, there are some general instructional ideas that work like this makes me think more about:

  1. When using a new curriculum, teaching the lessons as is the first year is extremely helpful in making productive adaptations. Having experienced the math goal in action and understanding what students did with the lesson activities was invaluable in adapting to better center students and their ideas.
  2. When we plan for lessons, we not only need to understand the content, goal, and lesson flow, we also need to look for places in the lesson where students are bringing their ideas and understandings to the table, especially when we are asking them to make new connections between concepts and representations. Side note: This is one of my favorite papers on students practicing connections.
  3. Unsurprisingly, students are so much more motivated to look for similarities and differences between their own work than a workbook example. The more we can do this, the better!
  4. Mathematizing children’s literature is such an incredibly engaging and powerful way to elicit and discuss math ideas. While this book is overtly mathematical, students still noticed things about the storyline and illustrations that showed wonderful sense making around the context. If you want to learn more about mathematizing, Allison and Tony wrote a beautiful book about mathematical read alouds with underpinnings, examples, and structures.

-Kristin

*If you are on Twitter (I can’t call it X yet), join me and others in sharing lesson ideas and learnings like this: https://x.com/LeahBaron03/status/1710305997472797074?s=20

Keeping Math Conversations Alive

Math routines are such a powerful tool for eliciting student ideas and making connections between them. The challenging part for me has always been ending them. Once I ask students for strategies or things they notice and wonder, the ideas are so uniquely interesting that I want to explore them all! However, when each idea can lead down a different path that may or may not be related to that day’s lesson, it is hard to know what to do in the moment. And the last thing I want to do is abandon the wonderful math ideas on the board.

Last week in 3rd grade we did a parallel choral count. Students counted by 2’s and then by 5’s as I recorded. I asked them to look for patterns they notice in either the individual counts or between the two. The lesson that followed was on multiplication, so the skip counting was helpful to lead into that lesson, but as more ideas started to emerge I found myself wondering where to go and what to do with all of these amazing ideas.

If you cannot follow my recording (how have I not gotten better at this after all these years:), here are some of the great math the students brought forward:

  • There are some of the same numbers in both counts, but in different locations.
  • All numbers in the 2 count are even and every other number in the 5 count is even.
  • The 5 count gets to a larger number faster than the 2 count.
  • Every number in the 2 count is the same number being added together – doubles.
  • In the 5 count, there are always 2 numbers with the same digit in the tens place.
  • At the top there is 2 + 5 = 7 and that is similar to the bottom row of 20 + 50 = 70
  • Even + even = even, odd + even = odd, and odd + odd = even
  • Someone added on that the bottom row is the same as 2×10 = 20 and 5×10 = 50

Every time I am in this situation I think about Joan Countryman’s book Writing to Learn Math. In there she describes math journals as a way to keep math conversations alive. That is exactly what I want to do with these ideas, keep them alive for more discussion. I am also a HUGE fan of math journaling, so I don’t need much of a nudge to use them!

Since we need the dry erase board for other things, the ideas cannot live forever on that board. I wondered about giving each student a copy of this picture to tape in their math journal. Then, when students finish up something early, they could find one of these ideas to explore further. I am thinking prompts like “The pattern I am exploring is…..” and “This pattern happens because….” might help students structure their explanations a bit.

Another idea that is more collaborative could be to replace an upcoming lesson warm-up with an idea from this count. We could display the picture on the board, highlight one of the patterns and ask students to work together to figure out why that pattern is happening and decide if they think it will always be true.

I would love to hear others’ ideas for not losing all the great math there is to explore in routines like this!

Embedding Problem Posing in Curriculum Materials

In mathematics education, problem posing refers to several related types of activities that entail or support teachers and students formulating and expressing a problem based on a particular context, such as a mathematical expression, diagram, table, or real-world situation (Cai & Hwang, 2020).

Because problem posing is so dynamic, multi-faceted, and varied between classrooms, I understand why it is hard to write into published curriculum materials. However, understanding and trying out the structure of problem posing makes it a really impactful teacher tool for adapting curriculum materials.

Why adapt ?

Curriculum activities typically require students to jump right into solution mode which explains why many students pluck numbers from word problems and operate without first making sense of the context. However, when students have the opportunity to pose their own mathematical problems based on a situation, they must make sense of the constraints and parameters that can be mathematized. They then extend from that sense-making activity to build connections between their existing understanding and the new context and its related mathematical ideas.1 This provides opportunity for increased student agency and sense making in any lesson.

How to adapt?

Last week, the third grade teachers and I planned for a lesson that involved students answering questions about data in a scaled bar graph from the prior lesson. Here is the data and graph they were working from.

Instead of asking students to jump right into answering the questions in their workbook, we removed that day’s warm-up to make time for problem posing and adapted the activities that followed.

First, we displayed the graph and asked students “What math questions can we ask about this group of students?” Below are 2 different class examples.

Having such a rich bank of questions, we could have asked students to jump into solving them, however we decided to spend some time focusing on the structure of their questions. We asked them to discuss, “Which questions are similar and why?.” The discussion ranged from similarities based on the operation they would use to solve, whether they could just look at the graph and answer the question without any operation, and the wording problems had in common or not. Such great schema for solving future word problems!

Now that students had made sense of the context and problems, we asked them to solve as many problems as they could. As they solved, we asked them to think about which problems they solved the same way and which ones they solved differently. As we wrapped up the lesson, we shared student solutions and focused on their solution strategies leading to an amazing connection about using addition or subtraction to solve the ‘how many more or less’ problems.

What was the original activity?

If we had followed the curriculum, these are the questions students would have solved. As you can see the students came up with similar, if not the same, questions and SO much more!

  1. How many students are represented in the graph?
  2. How many students chose spring or fall as their favorite season?
  3. How many more students chose summer than winter?
  4. How many fewer students chose spring than fall?

While having solid curriculum materials is extremely important, they can be made so much better by adapting lessons in ways that provide the space for students to make sense of problems and have ownership in the problems they are being asked to solve. I am so grateful for the teachers, admin, and Jinfa’s partnership in this work and look forward to sharing our work and learnings at NCSM DC!

  1. (PDF) Making Mathematics Challenging Through Problem Posing in the Classroom(opens in a new tab) ↩︎

Purposeful Warm-up Routines

As a teacher, curiosity around students’ mathematical thinking was the driving force behind the teaching and learning in my classroom. To better understand what they were thinking, I needed to not only have great, accessible problems but also create opportunities for students to openly share their ideas with others. It only makes sense that when I learned about routines that encouraged students to share the many ways they were thinking about math such as Number Talks, Notice and Wonder, and Which One Doesn’t Belong?, I was quick to go back to the classroom and try them with my students. It didn’t matter which unit we were in or lesson I had planned for that day, I plopped them in whenever and wherever I could because I was so curious to hear what students would say. Continue reading

CCSSMashup – Fractions

I never tire of conversations about the 3rd – 5th grade fraction progression because after each one, I leave with the desire to reread the Standards and Progressions with a new lens.

A few weeks ago, a conversation about 3rd grade fractions sent me back to the Standards with a #pairedtexts type of lens. Unlike the hashtag’s typical MO of pairing contrasting texts, I was looking for standards that connected in a meaningful, but maybe unexpected way. By unexpected, I don’t mean unintentional, I mean the two standards are not necessarily near-grade or in the same strand, so the connection (to me) is not as obvious as one standard building directly toward another.

The conversation focused on this standard:

Screen Shot 2017-10-12 at 3.01.16 PM.png

With that standard in mind, imagine a 3rd grade student is asked to locate 3/4 on a number line on which only 0 is marked.

I expect a student would mark off the 1/4’s starting at 0 and write 3/4 above the point after the third 1/4 segment. What exactly is the student doing in that process?

Is the student adding?

Is the student counting?

Is the student doing both?

How does adding and counting look or sound the same in this scenario? different?

This is where I find pairing two standards fun and interesting to think about because it demonstrates how important seemingly unrelated ideas work together to build mathematical understandings. It is also really fun to think about how a standard in Kindergarten is so important for work in grades 3-5 and beyond.

In this scenario, I think we instinctively believe students are adding unit fractions when asked to place 3/4 on the number line because the standard is in the fraction strand and therefore we consider all of the work to be solely about fractions. We also sometimes impose our thinking on what students are actually doing in this task. For example, you could imagine the student marking off the fourths, stopping after the third one, writing 3/4 and say the student was adding 1/4+1/4+1/4 to get to the 3/4 because they moved along the number line. If this is the case, then the standard would pair with this 4th grade standard:

Screen Shot 2017-10-12 at 3.36.21 PM.png

Don’t get me wrong, those standards definitely pair as students move from 3rd to 4th grade, however, since the scenario is about a 3rd grade student, pairing it with a higher grade level standard doesn’t seem to make sense in terms of what students are building on. Right here, it is really interesting to pause and think about how building fractions from unit fractions, locating a fraction on a number line, and adding unit fractions are slightly different things a progression.

When I think about the student locating 3/4 in 3rd grade, I hear counting (with a change in units) and would pair that 3rd grade standard with this Kindergarten counting and cardinality standard:

Screen Shot 2017-10-14 at 8.58.36 AM.png

However, because the 3rd grade work is on a number line and the arrangement and order does matter, I would have to add this 2nd grade measurement standard into the mix, but take off the sum and differences part:

Screen Shot 2017-10-12 at 3.35.21 PM.png

So, instead of a #pairedtext, I now think of it more as a #CCSSMashup to create this standard:

Screen Shot 2017-10-14 at 8.59.26 AM.png

With that mashup in mind, I went back to the progressions documents to look for evidence and examples of this.

In the 3rd Grade NF Progression these parts jumped out at me as being representative of this standard mashup:

The goal is for students to see unit fractions as the basic building blocks of fractions, in the same sense that the number 1 is the basic building block of the whole numbers; just as every whole number is obtained by combining a sufficient number of 1s, every fraction is obtained by combining a sufficient number of unit fractions.

The number line reinforces the analogy between fractions and whole numbers. Just as 5 is the point on the number line reached by marking off 5 times the length of the unit interval from 0, so 5/3 is the point obtained in the same way using a different interval as the basic unit of length, namely the interval from 0 to 1 /3 .

There is also a great “Meaning of Fractions” video on the Illustrative Mathematics site that explains this idea with visuals.

There are so many of these great mashups in the standards, especially in the fraction strand, that I find incredibly helpful in thinking about how students coherently learn mathematics.

I look forward to hearing your favorite #CCSSMashup!

Today’s Number: Making Connections

The Investigations curriculum and Jessica Shumway’s book, Number Sense Routines contain so many wonderful math routines. Routines designed to give students access to the mathematics and elicit many ways of thinking about the same problem. One of the more open routines, is Today’s Number. In Today’s Number, a number is posed to the class and the teacher can ask students for questions about that number, expressions that equal that number, or anything they know about that number. I love this routine, and while it is more commonly used in the primary grades, I used it often in my 5th grade classroom. While I would capture so much amazing student thinking, I always felt like all of that great thinking was left hanging out there. I could see some students were using what they knew about operations and properties to generate new expressions for the given number, however I wondered how many saw each expression as individual, unconnected ideas.

After I read Connecting Arithmetic to Algebra, I had a different ending to Today’s Number, an ending that pushed students to look explicitly at relationships between expressions. I tried it out the other day in a 3rd grade classroom.

I asked students for expressions that equaled Today’s Number, 48. I was getting a lot of addition, subtraction and multiplication expressions with two numbers, so I asked students if they could think of some that involved division or more than two numbers. I ran out of room so I moved to a new page and recorded their ideas.

After their thinking was recorded, I asked the students which expressions they saw a connection between. This is where my recording could improve tremendously, but I drew arrows between the two expressions as students explained the connection.

IMG_4399

In case the mess is hard to see, these are some connecting ideas that arose:

Commutative Property: 3 x 16 and 16 x 3, 6 x 8 and 8 x 6, 12 x 4 and 4 x 12

Fraction and Fraction addition: 48/1 and 24/1 + 24/1 and 24 + 24

Subtracting from 100 and 1000: 100-52 and 1000-952

Multiplication and Repeated Addition: 4 x 12 and 12+12+12+12

Adjusting Addends in similar ways: 38+10 and 18 + 30, 40 + 8 and 48+0

Other ideas that I don’t particularly know how to categorize:

10 x 4 + 8 = 10 x 4 + 4 x 2

58 x 1 – 10 = 58 – 10

The second page got even more interesting:

IMG_4398

“Groups of” and Decomposition: 7 x 4 + 2 + 18 = 14 + 14 + 2 + 10 + 8 . This student saw the two 14s as two groups of 7 and then the 18 decomposed into 10 + 8.

Halving and Halving the Dividend and Divisor: 192÷4 = 96÷2. This student actually used the 192 to get the expression with 96.

Another variation of the one above was 200 ÷ 4 – 2 = 100 ÷ 2 – 2.

Other cool connection: 

96 ÷2 = (48 + 48) ÷ 2; This student saw the 96 in both expressions since they were both dividing by 2.

I think asking students to look for these connections pushes them to think about mathematical relationships so expressions don’t feel like such individual ideas. I can imagine the more this is done routinely with students, the more creative they get with their expressions and connections. I saw a difference in the ways students were using one expression to get another after just pushing them try to think of some with more than 2 numbers and some division.

Number Talk: Which Numbers Are Helpful?

I think Number Talks are such a powerful routine in developing students’ fluency and flexibility with operations, but maybe not for the reason most think. One of the most highlighted purposes of a Number Talk is the ability to elicit multiple strategies for the same problem, however, an even more important goal for me during a Number Talk is for students to think about the numbers they are working with before they begin solving. And then, as they go through their solution path, think about what numbers are helpful in that process and why.

The struggle with trying to dig deeper into that thinking is simply, time. If the opportunity arises, I ask students about their number choices during the Talk but often students just end up re-explaining their entire strategy without really touching on number choices. Not to mention the other 20ish students start losing interest if they take too long. I do think it is a particularly tough question if students are not used to thinking about it and when the thinking happens so quickly in their head, they don’t realize why they made particular choices.

Last week in 2nd grade I did a Number Talk with two problems, one addition and one subtraction. During the addition talk, I noticed students using a lot of great decomposition to make friendly numbers (the term they use to describe 10’s and 100’s).

IMG_4374

During the subtraction problem, I saw the same use of friendly numbers, however in this one I actually got 100 as an answer. My assumption was because the student knew he was using 100 instead of 98, but got stuck there so went with 100 as the answer. I was really impressed to see so many strategies for this problem since subtraction is usually the operation teachers and I talk endlessly about in terms of where students struggle. I find myself blogging on and on about subtraction all of the time!

IMG_4373

When the Number Talk ended, I looked at the board and thought if my goal was to elicit a lot of strategies, then I was done – goal met. However, I chose the numbers in each problem for a particular reason  and wanted students to dig more into their number choices.

This is where I find math journals to be so amazing. They allow me to continue the conversation with students even after the Number Talk is finished.

I went back to the 100, circled it and told the class that I noticed this number came up a lot in both of our problems today. I asked them to think about why and then go back to their journal to write some other problems where 100 would be helpful.

Some used 100 as a number they were trying to get to, like in this example below. I really liked the number line and the equations that both show getting to the 100, but in two different ways.

IMG_4434

This student got to 100 in two different ways also. I thought this was such a clear explanation of how he decomposed the numbers to also use 10’s toward the end of their process as well.

IMG_4435

This student used the 100 in so many ways it was awesome! She got to 100, subtracted by 100 and adjusted the answer, and then added up to get to 100.

IMG_4428

While the majority of the students chose to subtract a number in the 90’s, this student did not which I find so incredibly interesting. I would love to talk to him more about his number choices!

IMG_4432

I didn’t give a clear direction on which operation I wanted them to use, so while most students chose subtraction because that was the problem we ended on, this one played around with both, with the same numbers. I would love to ask this student if 100 was helpful in the same or different way for the two problems.

IMG_4433

As I said earlier, this is a really tough thing for students to think about because it is looking deeper into their choices and in this case apply it to a new set of numbers. This group was definitely up for the challenge and while I love all of the work above, these two samples are so amazing in showing the perseverance of this group.

In this one, you can see the student started solving the problem and got stuck so she drew lines around it and went on to subtract 10’s until she ran out of time. I love this so much.

FullSizeRender 7

This student has so much interesting work. It looks as if he started with an addition problem involving 84, started adding, then changed it to subtraction and got stuck.

IMG_4436

This is what I call continuing the conversation. They wrote me notes to let me know Hey, I am not done here yet and I am trying super hard even though there are mistakes here. That is so powerful for our learners. So while there was no “right” answer to my prompt, I got a glimpse into what each student was thinking after the Number Talk which is often hard to do during the whole-group discussion.

If you want to check out how I use journals with other Number Routines, they are in the side panel of all of my videos on Teaching Channel. 

True or False Multiplication Equations

Today,  I was able to pop into a 3rd grade classroom and have some fun with a true or false equation routine! This routine has become one of my favorites, not only for the discussion during the activity, but more for the journals after the talk. I haven’t figured out quite how to use them with the students, but it gives me such great insight into their understandings that I would love to think about a way to have students reflect on them in a meaningful way.  I keep asking myself, what conjectures or generalizations could stem from this work?

I started with 4 x 3 = 3 + 3 + 3 + 3 to get students thinking about the meaning of multiplication and how we can solve for a product using repeated addition. I followed 6 x 4 = 8 + 8 + 4 to see how students talked about the 8’s on the right side. They could explain why it was false by either solving both sides or reasoning about the 8’s as two 4’s in some way.

My final problem was the one below, 8 x5 = 2 x 5 + 2 x 5 + 20. I chose this one because I wanted students to see an equation with multiplication on both sides. Up to this point, I structured them to be multiplication on one side and addition on the other.  There was a lot of solving both sides – I think because of the ease of using 5’s – but, as the discussion continued the students made some really interesting connections about why the numbers were changing in a particular way. I really focused on asking them, “Where do you see the 8 and 5 in your response?” to encourage them to think relationally about the two sides.

IMG_4181.jpg

I ended the talk with 8 x 6 = and asked the students to go back to their journals and finish that equation to make it true.

Some students knew it was equal to 48 right away and started writing equations that were equal to 48. For this student I probably would ask about the relationship between each of the new equations and 8 x 6.

IMG_0114

There are so many interesting things in the rest of them, that I am not sure what exactly to ask student to look at more deeply.

In all of them, I see…

  • Commutative property
  • Multiplication as groups of a certain number
  • Distributive property
  • Doubling and halving & Tripling and thirding

IMG_0103IMG_0104.jpg

IMG_0109IMG_0117IMG_0110

The student below shared this one with the class during the whole class discussion:

8 x 6 = 7 x 10 – 3 x 10 + 2 x 4

From her explanation, she could explain how both sides were 48, but when I asked her how it related to 8 x 6, her wheels started spinning. You can see she played all around her paper trying to make connections between the two. That is the type of thinking I want to engage all of the students in, but based on their own personal journal writing – but what is the right prompt? “Where is one side in the other?” or “How are they related?” <—that one feels like it will lead to a lot of “They are both 48” so I need a follow up.

IMG_0116

I actually left the room thinking about how I would explain how they two sides were related – in particular looking for either 8 groups of 6 or 6 groups of 8 on the right side. I found it was easier for me to find six 8’s, but now want to go back and find eight 6’s for fun. I can see how this could be so fun for students as well, but there is a lot of things going on here so I wonder how to structure that activity for them? Would love thoughts/feedback in the comments!

FullSizeRender.jpg