Category Archives: Fractions

Formative Assessment

Assessment always seems to be such a broad, hot topic  There are rubrics to help create assessments, rubrics for reviewing assessments, and tons of reading about the benefit of assessments. While I agree assessment is an important topic of conversation and all of these things can be helpful, I just lose a bit of interest when it becomes so cumbersome. I feel the longer the rubric and steps to create an assessment, the more detached the assessment becomes from student thinking.  This could be completely be my short attention span speaking, however the way assessment is discussed feels either like data (a grade or number-type of data) or a huge process with tons of text in rubrics that I really, quite honestly, don’t feel like reading. Not to mention, I just love looking at student writing and listening to student thinking when planning my immediate next steps (formative) or checking in to see what students have learned over a longer period (summative). This is why I find the work we are doing each month in our Learning Labs such a wonderful way to think about formative assessment in an actual classroom context, in real time.

This passage from NCTM’s Principles to Action really captures how I feel about the work we are doing in our Learning Labs:

Screen Shot 2016-04-06 at 2.43.31 PM.png

In this most recent Learning Lab in 3rd grade, we planned the activity together using the 5 Practices model and reflected after the lesson. Since this blog is always my thoughts about student work, I thought it would be great to hear what the teachers took away from the activities we are doing in terms of the students’ understandings and impact on their future planning, formative assessment.  

The teacher mentioned in the blog said, I was surprised by how quick many of the students defended their responses that 1/2 will always be greater than 1/3, and then proving this response using visual representation of the same whole ( which is an idea that we have made explicit). I was impressed with “skeptics” in the crowd that were looking to deepen their understanding around the concept by asking those “What if” questions.  Going forward, I want to create opportunities that push and challenge my student’s thinking. I want them to continue to question and explore math – especially when it uses the word “always.”

Another teacher who taught the same activity after watching it in action in another classroom said, “I learned that almost half of my students assumed they were comparing the same size wholes.  They agreed with the statement, and each student gave at least two different ways to prove their thinking (area and number line model were most common).  The students that disagreed almost all provided their own context to the problem, such as an example with small vs large pizzas, or a 2 different-length races being run.  I found it so interesting that almost all students confidently chose one side or the other, and were able to defend their thinking with examples (and more than one-yeah!)  I was excited to see that they could be so flexible in their arguments as to why they felt as they did.  Three students responded that they were unsure, and gave reasons to support both sides of the argument. This impacted my instruction by giving me such valuable formative assessment information with a simple, non-threatening prompt.  It took about 5 minutes, and gave me tons of information.  It was accessible and appropriate for all.  Students were comfortable agreeing or disagreeing, and in some cases, saying “unsure-and here is why.”  I was most excited about that!”

She also said, From this activity, I learned that I really needed to revisit the third grade standard to see what is actually expected.  It says they should recognize that comparisons are valid only when the two fractions refer to the same whole.  My statement didn’t have a context, so how cool that some were at least questioning this!   This impacted my planning and instruction by reminding me how thinking/wondering about adding a context to the statement would influence their responses.  I am also reminded that I need to stress that students must consider the whole in order to make comparisons accurately.”

Earlier in their fraction unit, the third grade teachers used the talking point below to hear how her students were talking about fractions. (This work is actually from another teacher’s class, but you get the idea;)

A teacher who did this activity reflected, “From this activity, I learned my students had only ever been exposed to a fraction as a part of a whole (and wanted to strictly refer to fractions in terms of pizza). This impacted my instruction by being sure to have the discussion that fractions can represent parts of a whole, but we can also represent whole numbers with fractions.”

To me, these reflections are what assessment should be….the teachers learn about student thinking, the students think about their own thinking, and what we learn helps us plan future lessons with our students’ understandings in mind!

More examples from different grade levels where the teachers and I learned so much about student thinking that impacted future instruction:

Kindergarten: Adding

Kindergarten: Counting

1st Grade: Fractions and Adding

2nd Grade: Counting and Leftovers

4th Grade: Division

5th Grade: Fraction Number Line

3rd Grade: Comparing Fractions

I was so excited just walking into Jenn Guido’s room today and seeing this awesomeness on the board from the day before:

IMG_2052.jpg

We chatted with the class a bit about their responses on the board before jumping into our Number Talk. One thing Jenn and I both noticed during this chat was the use of the word “double” when talking about equivalents such as 2/4 and 4/8. We had the chance to ask them what exactly was doubling and kept that in the back of our mind as something to keep revisiting. Even in 5th grade, I would hear the same thing being said each year. I would always have to ask, “What is doubling?” “What is 1/2 doubled?” “What exactly is doubling in the fraction?” “What happens when we double the numerator? denominator?”

After this chat, it was time to move into our planned activity. The class has been doing a lot of work with partitioning (and they used that word:) circles, rectangles and number lines so we planned a Number Talk consisting of a string of fractions for the students to compare. We were curious to hear how they talked about the fractions themselves and how they used benchmarks and equivalents. The string we developed was this:

1/6 or  1/8 – Unit Fractions

5/8 or 3/8 – Same Denominator (same-sized pieces in student terms)

3/8 or 3/4 – Common Numerator, Benchmark to 1/2, or Equivalents

3/3 or 4/3 – Benchmark to 1

The students shared their responses and did an amazing job of explaining their reasoning very clearly. In all of these problems and actually in all of their work thus far, they have always assumed the fractions referred to the same whole. We decided to change that up on them a bit and see what they would do with the statement, “1/2 is always greater than 1/3.” We thought the word “always” would make them second guess the statement, but we could not have been more wrong…they all agreed. A few students shared their responses, and it was great to see such a variety of representations.

This student was interesting because he used 12ths, and although he could not articulate why, it was labeled correctly. I am assuming it was because 1/2 and 1/3 could be placed on 12hs, but I am not sure because his reasoning sounds like he is comparing the 1/2 and 1/3 as pieces not in 12ths.

IMG_2071

Jenn, Meghan (another 3rd grade teacher with us in the room) and I chatted while they were working about how to get them to reason about different-sized wholes. A picture would have been a dead giveaway so I just went up and circled the word always and asked, “Does this word bother anyone?” and one lone student said it made him feel like there was a twist. I love those skeptics. I asked them to talk as a table about what the twist could be in this statement, and then we had some great stuff! They talked as tables, and while only two of the tables talked about different wholes (in terms of number lines which was not what I expected either), there was so many great conversations trying to “break the statement.”

This is an example of the number line argument:

IMG_2067

This group kept saying it would be a different answer if they were talking about “1/2 of” or “1/3 of”…then said, “Like 1/3 of 1/2” and THEN KNEW IT WAS 1/6 when I asked what that would be! They said 1/2 is 3/6 so 1/3 of that is 1/6. Wow. Then, of course I could not resist asking what 1/2 of 1/3 would be and they kept saying one half thirds, but could figure out how to write it and then questioned if that could even be right.

IMG_2073

After having the tables share with the whole group, they all agreed the statement should be sometimes instead of always. Jenn asked them to complete two statements…

“1/2 is greater than 1/3 when….”

“1/2 is not greater than 1/3 when…”

IMG_2070

IMG_2076

A great day! We are doing the same thing in Meghan’s classroom tomorrow and are changing the first problem in the string to 1/2 and 1/3 so we can revisit that at the end. Can’t wait!

5th Grade Fraction Clothesline

Today, I had the chance to plan and teach with a 5th grade teacher and it was awesome! Last week, this class had just finished a bunch of 100s grid shading in thinking about fraction/percent equivalencies, so we picked up planning the lesson in Investigations with the fraction/percent equivalent strips. Instead of the 10-minute math activity, we thought it would be really interesting to do the clothesline number line to kick off the class period.

We chose fractions (and one percent I will talk about later) based on the fractions the students had been working with on the grids. We chose fractions based on different comparison strategies that could arise such as:

  • Partitioning sections of the line
  • Distance to benchmarks
  • Equivalent Fractions
  • Common Denominator
  • Greater than, Less than or equal to a whole or 1/2

We settled upon the following cards:

1/4, 3/4, 4/4, 1/3, 4/3, 5/10, 2/5, 100%, 3/8, 1 5/8, 1 7/8, 4/5, 11/6, 1 6/10, 1/10, 9/8, 12/8, 2

To start, I put the 0 toward the left of the line (when you are looking at it) and we practiced with a few whole numbers. One student volunteered to be first and I handed her a card with the number 7. As she walked up, looked around, walked up and down the line, looked at me like I was playing some type of trick on her, we immediately had the conversation about how knowing the highest numbered card would be super helpful. She settled on putting it toward the far right side and had a seat. I gave another student the 10 card. He put that at the far right and adjusted the 7 to be “about 2 cards away” from the 10, leaving a really long distance from 0-7 for them to think about. We had some students disagree so we talked about distance and adjusted the cards to be more reflective of distance. Since the conversation of half of the distance to 10 came up, I handed another student the 5 card and he placed it right in the middle. The discussion went back to the 7 and they decided that since 7.5 would be halfway between 5 and 10 that 7 had to be a little bit less than the halfway of 5 and 10.

Then, we moved into the fraction cards. We gave each pair of student two cards. In hindsight, for times sake, I would probably only do one card per pair. I gave them one minute to talk about everything they knew about the fractions they had and then we started. I asked for volunteers who thought their card would help us get started and called on a boy with the 1 7/8 card. He went up and stood all of the way to the right and said he couldn’t put his on. I asked why and he said that since the cards were all fractions the line could only go to 1 so his is more than one and can’t go on here. I asked if anyone in the class had a card that may help us out and a student with the 2 card raised her hand. She placed her card all of the way to the right, said “maybe it goes to two” and the other student placed it just to the left of it because, “it is only 1/8 from 2.” Awesome!

We went along with the rest of the cards and so many amazing conversations, agreements and disagreements happened along the way. There are a few things that stand out in my mind as some great reflections on the activity:

  1. A student had placed 5/10 halfway between 0 and 1. The next student placed 2/5 just to the left of the 5/10 because, “I know 2 and a half fifths is a half so that means that 2/5 has to be less than 5/10. It is a half of a fifth away.” The NEXT student volunteered and placed 3/8 overlapping just the edge of the 2/5 card on the left. I was expecting percentages to come out, since that was their most recent work with those fractions, however the student said they knew 3/8 was an 1/8 from a half and 2/5 was a 1/10 from a half and an 1/8 and 1/10 are close but an 1/8 is just a little bit further away. Awesome and definitely not what I expected!
  2. I wish I had not put the zero so far to the left. Looking back I am wondering if that instills misunderstandings when they begin their work with negative numbers on a number line similar to the original misconception that launched the activity with the 1 7/8.
  3. Oh, the 100% card….complete mistake on my part, although it may have been a great mistake to have! In the first class, the student with the 100% card came up and said, “I have 100% and that is 100/100 which is 1” and put it in the appropriate place on the line. Just as she did that, I started thinking how I never really thought about the distinct difference between percent in relation to area (like the grids they had been shading) and 100% when dealing with distance on a number line. No one seemed to notice and since I didn’t know exactly what to ask at that point because I was processing my own thoughts, I waited until another student placed 4/4 on top of it and erased it from my immediate view!
    • I stayed for the next class and this time I was prepared for that card and now really looking around to see what students’ reactions were when it was placed. As soon as the student placed it at the 1 location, I heard some side whispers at the tables. I paused and asked what the problem was and they said, “100% is the whole thing.” The next student who volunteered had the 2 card, picked up the 100% card on the way to the right side and put the 2 down and the 100% on top. Lovely and just what I was thinking.

I have never had students reflect on the difference of talking about percentages with distance versus area because I had never thought about it! It definitely feels like an interesting convo to have and a great mistake that I am glad I made!!

IMG_0840

I will be back in another 5th grade class tomorrow and will see what happens…it could make for a great journal writing!

-Kristin

Fraction/Percent Equivalents

It goes without saying that I miss talking 5th grade math with my students each day. But I am so lucky this year to have a new, wonderful teacher in 5th grade who lets me plan and teach some lessons with her! This lesson was one of her first lessons of Unit 4, Name That Portion.

Since in 4th grade the students do a lot of work with comparing fractions, we designed a Number Talk string in which students were comparing two fractions. We wanted to hear how they talked about the fractions. In the string we used a set with common denominators, common numerators, and one unit from a whole. On each problem we were excited to hear talking about the “size of the piece” being the unit and the numerator telling us how many of those pieces we have. Our 4th grade teachers really do a beautiful job with this work. They also used equivalents to have common denominators to compare and a few used percents, since they had done a some grid work with that they day before.

We started the lesson by asking them how they could shade 1/4 on a 10×10 grid. The majority of the students split the grid in half vertically and then again horizontally and shaded one quadrant. We heard a lot of the “1/4 is half of a half.” As I was walking around, I heard a pair talking about shading a 5×5 in that grid. I saw this as a beautiful connection to the volume unit they just completed in which they were adjusting dimensions and seeing the effect on the volume. I had her explain her strategy and wrote 5 x 5 under the 10 x 10 that was up on the board already and asked how that could get us 1/4 of the whole thing? One student said it looks like it should be half of it because 5 is half of 10, but then one student said since we were taking 1/2 of both it would be a fourth….this is where I hope Leigh (the 5th grade teacher) and I remember to use this when they hit multiplication of fractions!

They then worked in pairs to shade 1/8 and 3/8 and we came back to discuss. We noticed as we walked around that the shading was wonderful on their papers, but when asked to write the fraction and percent, most were blank. I remember this lesson from last year during decimals where the same thing happened. So, we asked them what they thought the fraction was as we got these three answers…

12 r4/100

12 1/2/100

12.5/100

They were not overly comfortable with any of them so we asked them to journal which one “felt right” to them and why…

IMG_0789 IMG_0781 IMG_0786 IMG_0780 IMG_0779 IMG_0784 IMG_0790 IMG_0787

We loved to see what they knew about decimal fraction relations, but we especially liked the “it sounds more fifth grady to use 12.5.”

-Kristin

Listening Carefully to Student Thinking

Recently, I have been reviewing a new “CCSS-Aligned” middle school curriculum and find myself completely frustrated with the overabundance of scaffolding and lack of student thinking required on every assignment. Not having the days/weeks it would take for teachers to engage in the mathematics as both learners and teachers, I needed a short, powerful way to show that this is not how students should experience/learn mathematics.

As I looked at the fraction page like this, my thought was “Why just two ways?” quickly followed by “Why those two ways?” quickly followed by “My students are doing this now, flexibly.”

IMG_0598Right then, I realized the perfect proof of why NOT to do this, was the work my students already do when given the freedom to reason about a problem and do more than just procedurally compute an answer. So, I put the proof in their hands.  I simply asked them to solve 2/5 x 7/10 as many ways as they could. Some got creative after a couple of ways, and by no means am I saying some of these are “efficient,” but they show so much flexibility.

new doc 9_4 new doc 9_5 new doc 10_4new doc 10_1

This felt perfect. Why would we want to miss out on all of the great conversations that can happen around this work by making them answer in just 2 ways, and more specifically, those 2 ways they show you how to do…step-by-step?

and THEN this happened which validated my thoughts even further and instantly made me reflect on my friend Christopher’s talk at ShadowCon (video coming soon) around listening carefully to student thinking…

The students were working on 2/5 x 7/10 as I was walking around the room observing their work. I glanced over a student’s shoulder and saw “Doubling and Halving” written on her paper with the correct answer. Assuming it was doubling/halving in the sense of doubling one factor and halving another factor, I was excited to see the use of the strategy.

IMG_0643

I asked her how she did it, she said, “I double/halved” and I was about to move on to get ready for our sharing. When I glanced down, however, it was not at all like I had imagined. I asked her to explain further…“I halved this numerator and doubled this denominator [points to 2/5] then I doubled this numerator and halved this denominator [points to 7/10].”. Ok, now THIS is much different than I thought!!

I had her share, and others immediately said they had double/halved also but did not get those fractions to multiply and wondered if that worked every time (I love that they ask that now:). I let them play around with it for a bit but since we had some division work to do I told them to keep thinking about that and we will revisit it tomorrow. By the end of the next class period, I had a student come up and say, “She didn’t double/half really, she quadrupled/fourthed.” I asked him to write down his explanation for me because it was lovely.

IMG_0647IMG_0648So glad I listened carefully and didn’t makes assumptions on her understandings because how amazing is this work? I am also so glad that I can appreciate a curriculum that allows for these reasonings and conversations to happen.

-Kristin

Creating Contexts for Decimal Operations

Sometimes I have students engaging in math within a context, however at other times, we just explore some beautiful patterns we see as we play around with numbers. I see a value and need for students to experience both. This week was one of those “number weeks” and it was so much fun!

Over the past few weeks, we have been working on decimal multiplication. If you want to see the student experiences prior to this lesson, they are all over my recent blog posts….it is has been decimal overload lately:) After sharing strategies and connecting representations in this lesson, I was curious how students thought about this problem in a context because up to this point, I had not given them one for thinking about a decimal less than one times a decimal less than one.After they wrote their problem, I asked them to tell me what they were thinking about as they were deciding on the context.

I anticipated that many would refer back to what they know about taking a fraction less than 1 of a fraction less than 1, like in this example…

IMG_0343

I love how this one said she knew she “had to start with .4” That shows the order of the numbers in the problem create a context for her. It mattered to her, taking .6 of the .4.

IMG_0340

This student went with two different contexts and again saying that he started with the .4. This must be something we have chatted about quite a bit about because it showed up multiple times. I loved how this student said he thought about an area model in creation of his problems.

IMG_0342

This student was great in listing all of things he was thinking about as he thought about a context..

IMG_0344

I had students who attempted to create a “groups of” context. I don’t know if I ever realized how difficult this and how much I, as an adult, need to be able to create a visual in my mind of what is happening in a problem to make sense of it. Here is one example (not the sweetest context but she thought the Mary HAD a little lamb was clever…) She worked a bit yesterday to show what the representation would be, but kept running into problems with cutting into “.6 pieces.”

IMG_0360

And then I have these two that had my brain reeling for a bit, for many reasons. First, does the context work with this problem? Secondly, I knew it sounded like it should work, but when I tried to make sense of it, I couldn’t create a visual. Also, as I read them, I thought I knew where it was going and the question I would pose, but it wasn’t the way they saw it ending. I asked them to create an Educreations about their problem so I could check out their thinking around the context.

Yes, Rick Astly. But the question at the end, compared to the total time Never Gonna Give You Up, threw me a bit, not where I was going with it….

IMG_0346

His Explanation: https://www.educreations.com/lesson/embed/31398809/?ref=embed

The second one tried it out, and wasn’t so sure of his question after messing with it. The wording “.6 as small” was making me think. I was trying to make sense of that wording, do we ever say six tenths times as small? Then does his question referring back to the .4 make sense?

IMG_0345His Explanation:https://www.educreations.com/lesson/embed/31402039/?ref=embed

Definitely a lot for me to think about this week too! I have some amazing work with them connecting representations to write up later…they are just such great thinkers!

-Kristin

Commutativity in Fraction Multiplication

Think about these two expressions…

2/3 x 6              6 x 2/3

Do you think differently about each?

Does your solution approach change?

I had not really given this much thought because we do both in 5th grade, multiply a fraction by a whole number and whole number by a fraction. However, recently, when working with a group of 4th grade teachers and looking more closely at the standards and my curriculum, I am beginning to see a distinct difference. I now look at each expression from a different perspective. Not that both ideas do not arise at multiple grade levels in some form or another, but it is so interesting to me as to which thinking would come before the other.

Let’s first look at the standards…

4th Grade:

cc25th Grade:

cc1

Interesting. For me, taking a fraction of a group feels more “natural” and intuitive than multiplying a whole number by a fraction, however in the learning trajectory of multiplication and building of unit fractions composing a whole, the multiplication of a whole by a fraction feels like the natural next step.

For our upcoming Illustrative Mathematics professional development, I was collecting work samples for the following problem (thanks Jody:)

“Presley is wrapping 6 packages. Each package needs 2/3 of a yard of ribbon. How much ribbon will she use for wrapping the 6 packages?”

As anticipated, I received a wide variety of solutions to arrive at 4 yards of ribbon. Here are just a few examples in what I think is the progression I expect (some of them got finished  quickly and opted to show a few ways to solve).

IMG_9719_2 IMG_9720_2 IMG_9721_2 IMG_9723_2IMG_9722_2 IMG_9724_2  IMG_9725_2 IMG_9726_2 IMG_9727_2 IMG_9728_2 IMG_9729_2 IMG_9731_2IMG_9730_2

They all finished fairly quickly and as I was walking around I thought it was really interesting to see such a variety in the equations they used to represent the problem. We came together as a whole group and I asked them for the equations they thought best represented the problem. The most common answers were: 2/3 x 6 = 4, 6 x 2/3= 4 and 2/3 + 2/3 + 2/3 + 2/3 + 2/3 + 2/3= 12/3 = 4.

I asked them if there was a difference between the equations and there was a unanimous “No” because they mean the same thing. “They all get 4.” In my head I was very excited that commutativity was something they see when finding a solution, but I was also curious if it worked the same in the opposite direction. I asked if we could narrow it down to two equations and they all agreed that the repeated addition was the same as 6 x 2/3 because it was “six groups of 2/3.” Interesting, so they see that in the numeric representation but not contextually?

I then asked them to write 6 x 2/3 and 2/3 x 6 on the top of their journal page and think about them without the previous context.  I posed, “If I gave you these two problems to solve, would you think about them the same way? Do you think about them differently?” I was curious to hear their thoughts on the commutativity.

IMG_9692 IMG_9694 IMG_9695 IMG_9696

The conversation after was so great and interesting! There is a difference when going from number to context, however when put in context, I think students use whatever strategy is easiest for them to arrive at the answer. Is this what is truly meant by contextualizing and decontexualizing in the SMPs?

To further intrigue me, I went and pulled a few fourth graders to interview during my planning period. It was so interesting that they saw this as a whole number times a fraction because it was “six 2/3’s.” Their connection to multiplication and “groups of” was evident. I did love how they did 3 of the 2/3s first to get 2 and then doubled that to get 4.

IMG_9733 IMG_9734 IMG_9735

This 4th grader was the most interesting..

IMG_9736She solved it as 2/3 of 6 and arrived at 4. I asked her if she could write an equation for the problem she solved and she wrote 2/3 of 6 = 4. Completely because I am so nosy, I asked her to write 6 x 2/3 under that. I asked how she thought about that problem? Would she solve it the same? She said, “No, that is 6 of the 2/3’s so I have to multiply the 2 and 3 by 6.” She proceeded and ended with 12/18. She saw the numerator and denominator as numbers in and of themselves and used the distributive property to arrive at her answer instead of thinking about the 2/3 as a number. This was something I had never thought of before! I wish I had more time with her because I SO wanted to ask if that makes sense, but since my planning runs into dismissal, she had to get back to class! Argh!

This progression (to me) now seems to be more about building on student’s understanding of multiplication then about what is more intuitive for students to do. That is such a revelation to me. In second and third grade students do so much in “sharing” situations, that I had assumed it was en route to this skill of taking a fraction of a number when in fact it is more about the operations. It builds multiplication and division. Those operations then progress from operations with whole numbers to operations with fractions and from there students start to build deeper understandings of the properties of operations.

This is of course, all my interpretation based on my experiences and perspective of the student work, but how awesome! I cannot wait to share this with the 4th grade teachers along with the video of the kids chatting with me about this, awesome stuff!!

-Kristin