Category Archives: 3rd Grade

3rd Grade Dot Image

Since the 3rd grade classes are about to begin their multiplication unit, the teachers and I wanted to hear how they talk about equal groups to get a sense of where they are in their thinking. What better way to do that than a dot image? I chose the first image because of the 3’s and “look” of 5’s and the second image because of the 2’s,3’s, and 6’s, all of which students can count by easily.

Image 1 went relatively the same in both classrooms and much like I anticipated. There were two things that stood out to me as a bit different between the class responses:

  • There were more incorrect answers shared in the 1st class than the 2nd class.
  • In the second class, multiplication came out during the discussion. The “4 groups of 7 and 4 x7 = 28” in the 1st class came out after both images were finished and one student said she knew some multiplication already. She asked to go back to the first image and gave me that.
img_2983

1st Class

img_3005

2nd Class

After the first image, I anticipated Image 2 would go much the same, however it was quite different.

img_2984

1st Class

img_3004

2nd Class

After the 1st image, I was really surprised at the difference in responses and I have to say it even felt really different. My assumption at this point is that in the 2nd Class one of the early responses was multiplication.

I am left wondering:

  • Does that early multiplication response shut down other students who don’t know anything about multiplication yet? While I asked her to explain what she meant when she said 4 x 12, I wonder if that intimidated others?
  • How could I have handled that response differently so others felt OK using skip counting or addition to count the dots?
  • Can we anticipate that type of reaction from other students when someone starts the discussion with something that may be beyond where the majority of the class is in their thinking?
  • Was this even the issue at all? Did the 2nd class just see so many more dots and wanted to avoid adding and skip counting?

The 2nd Class ended with a journal entry after a student remarked, “If we know it is 8 groups of 6, then it is also 6 groups of 8.”

I asked if 8 groups of 6 is the same as 6 groups of 8 and the class was split on their response, so they set off to their journals.

The yes’s went with multiplication expressions representing the same product and commutative property:

img_3006img_3007

I loved this no because the picture changes:

img_3009

I am not sure about this argument but I would love to talk to the student a bit more about the bottom part!

img_3008

After that talk, I am excited to see what these guys do when they actually start their multiplication unit!

Which One Doesn’t Belong? Place Value

Since the 3rd grade team begins the year with an addition and subtraction unit in Investigations the teachers and I were having a conversation about how students understand place value. While I don’t see teachers using the HTO (hundreds/tens/ones) chart in their classrooms, students still seem to talk about numbers in that sense. For example, when given a 3-digit number such as 148, students are quick to say the number has 4 tens instead of thinking about the tens that are in the 100. I think a lot of this is because of how we as teachers say these things in our classrooms. I know I am guilty of quickly saying something like, “Oh, you looked at the 4 tens and subtracted…” when doing computation number talks, which could lead students to solely see the value of a number by what digit is sitting in a particular place.

We thought it would be interesting to get a vibe of how this new group of 2nd graders talked about numbers since their first unit deals with place in terms of stickers.  A sheet of stickers is 100, a strip of stickers is 10 and then there are the single stickers equal to 1.

I designed a Which One Doesn’t Belong? activity  with four numbers:  45, 148, 76, 40

I posted the numbers, asked students to share which number they thought didn’t belong, and asked them to work in groups to come up with a reason that each could not belong. Below is the final recording of their ideas:

img_2969

I loved the random equation for 148 that emerged and the unsureness of what numbers they would hit if they counted by 3’s or 4’s. One student was sure she would say 45 when she counted by 3’s and was sure she would not say 76 or 40, but unsure about the 148. I wrote those at the bottom for them to check out later.

Since the teacher said she was good on time, I kept going. I pulled the 148 and asked how many tens were in that number. I was not surprised to see the majority say 4, but I did have 3 or 4 students say 14. As you can see below a student did mention the HTO chart, with tallies, interesting.

img_2970

As students shared, I thought about something Marilyn Burns tweeted a week or so ago…

Screen Shot 2016-09-16 at 10.37.25 AM.png

So, I asked the students to do their first math journal of the school year (YEAH!):

“For the students who answered 14, what question did you answer?

“For the students who answered 4, what question did you answer?

After the students shared, I revisited the Hundreds, Tens, Ones chart. I put a 14 in the tens column, 8 in the ones column, and asked if that was right. The light bulbs and confusion was great! It was as if I had broken all rules of the HTO chart! Then I put a 1 in the hundreds, 3 in the tens, and they worked out the 18. I look forward to seeing them play around with this some more and wonder if when they go to subtract something 148-92, they can think 14 tens -9 tens is 5 tens.

I had to run out because I was running out of time, but snagged three open journals as I left! (I especially love the “I Heart Math” on the second one!
FullSizeRender 52.jpg

fullsizerender-52

fullsizerender-53

My One Hundred Hungry Ants Obsession

Lately, I have been obsessed with children’s literature across K-5. My most recent obsession is the book One Hundred Hungry Ants. I did this in Kindergarten and this in 4th grade and today I invaded a 3rd grade classroom with it!

I followed the same pattern I usually do, I read the story aloud and did a notice/wonder. These are all of the things they noticed:

IMG_2510 (1).jpg

The last one led perfectly into asking about the ways the ants rearranged themselves. I wrote the combinations they recalled from the book and asked them to chat with a neighbor about patterns they see.

IMG_2509 (1).jpg

The discussion started with the 50+50=100, 25+25=25 and 10+10=20. Another student said they had the same things but it sounded different because she saw 50 was half of 100. They moved away from that and went to divisibility by the numbers that did not show up like 3,6,7,8, and 9 and pointed out that all of the second factors were multiples of 5. At this point they were focusing primarily on the second factor until someone pointed out the increasing and decreasing pattern happening. Then we got into the doubling and halving, quadrupling and dividing by 4 and multiplying and dividing by 10 of the factors.

I asked them if that would work with any number I gave them. They were quiet so I threw a number out there for them to think about, 24. They had to move into another activity so I left them with that thought. Before I left, however, one student said yes for 24 because 2×12, 4×6,8×3. Another student said it could be sixteen 1 1/2s and then thirty-two 3/4s! Wow!

Tomorrow they are going to investigate this further to see if they can come up with a conjecture about this work! So excited!

Making Sense of Problems: Part 2

This post is an extension of a previous post. For the background story to this post, it will be helpful to read THIS POST first.

The original Noticing and Wondering from the launch of the lesson:

FullSizeRender 44

Here are some expanded descriptions of the student work:

Chose numbers strategically to make it easier for themselves:

These two girls were great because they wrote out the paragraph first with the blanks left to fill in after they made a decision on their numbers. You can see the erased 5 in the second blank. When I asked them about it, they said 25 in a class seemed like too many but they couldn’t make the class too small to each get more than 1 bar.

IMG_1792

These two were concerned with the number in each box. They said they knew 6 usually came in a box so they just did 4 boxes and then wrote the students in last to make it easy division.

IMG_1787

These two were done SUPER fast so I gave them 5 more bars to try and decide what they wanted to do with them. They didn’t do any written work, but asked me how they divide something up into 5 pieces because then each student could get a piece. “We know halves and fourths, but that is not 5 pieces.” After playing around with “fiveths” I gave them the word fifths and they wrote down 1/5.

IMG_1797IMG_1790

These two partners were so interesting because when I walked by the first time they had chosen their numbers together, but when I went back the second time, their computation was completely different. I absolutely loved that and asked them to explain their strategy to one another and asked how they were the same and how they were different. The difference was more about the look  of their work, but they agreed they were the same because it was still how many 30s were in 63.

Chose numbers randomly:

IMG_1798IMG_1793

…and then they worked together on breaking the extra 3 into 10 pieces. Because they didn’t know how to name tenths, they went to something they obviously knew something about…percents! We ran out of time to ask how they knew that was 10%, but I have to make a point to go back and ask!

IMG_1794

Dealt with the leftovers using fractions:

This one took a while for me to figure out. These two girls finished rather quickly, so I asked them if they could share the leftovers equally among the kids in the class. It looks like they multiplied the 22 by 2 to get how many pieces they would have if they split them in halves. They each person got an extra 1/2 and they were left with 18 halves. They multiplied by 2 to make them wholes again and ended with 9 bars left over. The sense-making in this one was so incredible to me.

IMG_1796

Chose numbers strategically to make it harder for themselves: 

When I asked these two girls why they chose the numbers they did and they said they wanted to make it hard! There are so many things I think continued to be fabulous after their initial number choice. The partial products for multiplication and then the repeated subtraction were amazing. I asked them why they were subtracting 26 every time. They said each time they subtracted 26, each student got 1, hence the growing list of 1,2,3,4,5… Absolutely awesome and something I would have never seen if I had given the original problem and the sense-making of what is happening whey you repeated subtract to divide just blows my  mind.

IMG_1786

To me, every one of these examples, along with all of the papers in the class that day, demonstrated to me how we need to look critically at our math textbooks, think deeply about what we learn about students as they do that work, and adapt materials to allow students to make sense of problems and allow us to learn more about their understandings.

Formative Assessment

Assessment always seems to be such a broad, hot topic  There are rubrics to help create assessments, rubrics for reviewing assessments, and tons of reading about the benefit of assessments. While I agree assessment is an important topic of conversation and all of these things can be helpful, I just lose a bit of interest when it becomes so cumbersome. I feel the longer the rubric and steps to create an assessment, the more detached the assessment becomes from student thinking.  This could be completely be my short attention span speaking, however the way assessment is discussed feels either like data (a grade or number-type of data) or a huge process with tons of text in rubrics that I really, quite honestly, don’t feel like reading. Not to mention, I just love looking at student writing and listening to student thinking when planning my immediate next steps (formative) or checking in to see what students have learned over a longer period (summative). This is why I find the work we are doing each month in our Learning Labs such a wonderful way to think about formative assessment in an actual classroom context, in real time.

This passage from NCTM’s Principles to Action really captures how I feel about the work we are doing in our Learning Labs:

Screen Shot 2016-04-06 at 2.43.31 PM.png

In this most recent Learning Lab in 3rd grade, we planned the activity together using the 5 Practices model and reflected after the lesson. Since this blog is always my thoughts about student work, I thought it would be great to hear what the teachers took away from the activities we are doing in terms of the students’ understandings and impact on their future planning, formative assessment.  

The teacher mentioned in the blog said, I was surprised by how quick many of the students defended their responses that 1/2 will always be greater than 1/3, and then proving this response using visual representation of the same whole ( which is an idea that we have made explicit). I was impressed with “skeptics” in the crowd that were looking to deepen their understanding around the concept by asking those “What if” questions.  Going forward, I want to create opportunities that push and challenge my student’s thinking. I want them to continue to question and explore math – especially when it uses the word “always.”

Another teacher who taught the same activity after watching it in action in another classroom said, “I learned that almost half of my students assumed they were comparing the same size wholes.  They agreed with the statement, and each student gave at least two different ways to prove their thinking (area and number line model were most common).  The students that disagreed almost all provided their own context to the problem, such as an example with small vs large pizzas, or a 2 different-length races being run.  I found it so interesting that almost all students confidently chose one side or the other, and were able to defend their thinking with examples (and more than one-yeah!)  I was excited to see that they could be so flexible in their arguments as to why they felt as they did.  Three students responded that they were unsure, and gave reasons to support both sides of the argument. This impacted my instruction by giving me such valuable formative assessment information with a simple, non-threatening prompt.  It took about 5 minutes, and gave me tons of information.  It was accessible and appropriate for all.  Students were comfortable agreeing or disagreeing, and in some cases, saying “unsure-and here is why.”  I was most excited about that!”

She also said, From this activity, I learned that I really needed to revisit the third grade standard to see what is actually expected.  It says they should recognize that comparisons are valid only when the two fractions refer to the same whole.  My statement didn’t have a context, so how cool that some were at least questioning this!   This impacted my planning and instruction by reminding me how thinking/wondering about adding a context to the statement would influence their responses.  I am also reminded that I need to stress that students must consider the whole in order to make comparisons accurately.”

Earlier in their fraction unit, the third grade teachers used the talking point below to hear how her students were talking about fractions. (This work is actually from another teacher’s class, but you get the idea;)

A teacher who did this activity reflected, “From this activity, I learned my students had only ever been exposed to a fraction as a part of a whole (and wanted to strictly refer to fractions in terms of pizza). This impacted my instruction by being sure to have the discussion that fractions can represent parts of a whole, but we can also represent whole numbers with fractions.”

To me, these reflections are what assessment should be….the teachers learn about student thinking, the students think about their own thinking, and what we learn helps us plan future lessons with our students’ understandings in mind!

More examples from different grade levels where the teachers and I learned so much about student thinking that impacted future instruction:

Kindergarten: Adding

Kindergarten: Counting

1st Grade: Fractions and Adding

2nd Grade: Counting and Leftovers

4th Grade: Division

5th Grade: Fraction Number Line

3rd Grade: Comparing Fractions

I was so excited just walking into Jenn Guido’s room today and seeing this awesomeness on the board from the day before:

IMG_2052.jpg

We chatted with the class a bit about their responses on the board before jumping into our Number Talk. One thing Jenn and I both noticed during this chat was the use of the word “double” when talking about equivalents such as 2/4 and 4/8. We had the chance to ask them what exactly was doubling and kept that in the back of our mind as something to keep revisiting. Even in 5th grade, I would hear the same thing being said each year. I would always have to ask, “What is doubling?” “What is 1/2 doubled?” “What exactly is doubling in the fraction?” “What happens when we double the numerator? denominator?”

After this chat, it was time to move into our planned activity. The class has been doing a lot of work with partitioning (and they used that word:) circles, rectangles and number lines so we planned a Number Talk consisting of a string of fractions for the students to compare. We were curious to hear how they talked about the fractions themselves and how they used benchmarks and equivalents. The string we developed was this:

1/6 or  1/8 – Unit Fractions

5/8 or 3/8 – Same Denominator (same-sized pieces in student terms)

3/8 or 3/4 – Common Numerator, Benchmark to 1/2, or Equivalents

3/3 or 4/3 – Benchmark to 1

The students shared their responses and did an amazing job of explaining their reasoning very clearly. In all of these problems and actually in all of their work thus far, they have always assumed the fractions referred to the same whole. We decided to change that up on them a bit and see what they would do with the statement, “1/2 is always greater than 1/3.” We thought the word “always” would make them second guess the statement, but we could not have been more wrong…they all agreed. A few students shared their responses, and it was great to see such a variety of representations.

This student was interesting because he used 12ths, and although he could not articulate why, it was labeled correctly. I am assuming it was because 1/2 and 1/3 could be placed on 12hs, but I am not sure because his reasoning sounds like he is comparing the 1/2 and 1/3 as pieces not in 12ths.

IMG_2071

Jenn, Meghan (another 3rd grade teacher with us in the room) and I chatted while they were working about how to get them to reason about different-sized wholes. A picture would have been a dead giveaway so I just went up and circled the word always and asked, “Does this word bother anyone?” and one lone student said it made him feel like there was a twist. I love those skeptics. I asked them to talk as a table about what the twist could be in this statement, and then we had some great stuff! They talked as tables, and while only two of the tables talked about different wholes (in terms of number lines which was not what I expected either), there was so many great conversations trying to “break the statement.”

This is an example of the number line argument:

IMG_2067

This group kept saying it would be a different answer if they were talking about “1/2 of” or “1/3 of”…then said, “Like 1/3 of 1/2” and THEN KNEW IT WAS 1/6 when I asked what that would be! They said 1/2 is 3/6 so 1/3 of that is 1/6. Wow. Then, of course I could not resist asking what 1/2 of 1/3 would be and they kept saying one half thirds, but could figure out how to write it and then questioned if that could even be right.

IMG_2073

After having the tables share with the whole group, they all agreed the statement should be sometimes instead of always. Jenn asked them to complete two statements…

“1/2 is greater than 1/3 when….”

“1/2 is not greater than 1/3 when…”

IMG_2070

IMG_2076

A great day! We are doing the same thing in Meghan’s classroom tomorrow and are changing the first problem in the string to 1/2 and 1/3 so we can revisit that at the end. Can’t wait!

Rhombus vs Diamond

Every year in 5th grade, when we begin classifying quadrilaterals, students will continually call a rhombus a diamond. It never fails. While doing a Which One Doesn’t Belong in 3rd grade yesterday, the same thing happened, so Christopher’s tweet came at the most perfect time! (On Desmos here: https://t.co/rZQhu2SGnR)

Of course I had to pop into the same classroom today and try it out! The lower right was so obviously a diamond to me that I was curious to see if students saw the same thing and if it changed their reasoning about the rhombus as a diamond.

Here are pictures of the SMARTboard after our talk:

IMG_1784IMG_1783

After great discussions around number of sides, rotations, decomposition and orientation, they finally got to the naming piece. Honestly, I was surprised names didn’t come up as one of the first things. It started with a student saying the square didn’t belong because it is the only one that doesn’t look like a diamond. The next student said the lower left was the only one “that didn’t have a name.” When I asked him to explain further, he named the square, rhombus, and diamond. Because I knew at the end of our talk I wanted to ask about the diamond vs rhombus, I wrote the names on the shapes. Another classmate added on and said the lower left “may not have a name but it is kite-shaped and looks like it got stuck in a tree sideways.” I asked the class what they thought about the names we had on the board and it was a unanimous agreement on all of them. Funny how quickly they abandoned their idea from yesterday, so I reminded them….they were not getting off the hook that easy;)

“Yesterday you were calling this rhombus a diamond, what changed your mind?”

Students explained that the lower right actually looks like a real diamond and the rhombus doesn’t now that they see them together.

“Can we call both of them a diamond?” I asked. I saw a few thinking that may be a great idea. I had them turn and talk to a neighbor while I listened to them.

We came back and they seemed to agree we couldn’t call them both a diamond because of the number of sides. They were really confident in making the rule that the quadrilateral one had to be a rhombus and the pentagon was the diamond. I pointed to the kite and asked about that one, since it has four sides. “Could we call this a rhombus?” They said no because the sides weren’t equal, so not a rhombus. And because it didn’t have five sides, not a diamond either.

Thank you Christopher! All of these years of trying to settle that rhombus vs diamond debate settled right here with great conversation all around!

Next up, this one from Christopher…