Tag Archives: Collaboration

Adapting Lessons Part 2: Structuring Group Work

Just like the launch of a lesson shapes how students access the mathematics, the structures we use during group work support what they do once they’re in it. In these moments, who talks, who listens, and whose ideas move the work forward can either widen or narrow the thinking that happens. Group time can be a place where rich, collaborative work happens, but it involves much more from the teacher than giving the directions ‘work with your group,’ ‘turn and talk,’ or ‘think pair share.’ While a curriculum can provide teachers with helpful suggestions, the uniqueness of each group of students places the responsibility heavily on the teacher, which makes sense. Only the teacher knows their students and the dynamics within each small group. Small shifts in how we organize students, position their ideas, and support their discussions can dramatically impact both the mathematical practices that students engage in as they work and the mathematical thinking that students bring to the whole group discussion afterward. 

After exploring ways to launch a lesson, the next opportunity for quick, high-leverage adaptations comes when students begin working together. From the moment we ask students to collaborate to the moment when we circulate and listen, the structures we choose can either uncover students’ thinking or unintentionally limit it. Thoughtful approaches to group work can support collaboration, build mathematical habits of mind, and strengthen the sense of community we hope to see in our classrooms. In this post, we’ll look at quick, in-the-moment ways to support group work so every student has an opportunity to contribute and every idea has a chance to surface.

Alternate Ways to Work in Groups

Instructional Challenges: When students jump into group work without clear structures for talking and listening, it becomes easy for one person’s ideas to dominate while others disengage. Without intentional support, some students simply “go along” with the loudest or quickest thinker, and opportunities for deeper reasoning are lost. Additionally, when students stay in the same assigned seats, groups can become static. While this consistency can help early in the year as a community is forming, it can also limit the range of perspectives and mathematical ideas students encounter over time.

Each of these routines require students to articulate their ideas and listen to the ideas of others. One routine I love to support these practices is Talking Points. It didn’t really fit with the others in the table, but I wanted to mention it here as I close out the post. This routine includes giving each group a carefully crafted statement (for example, a prompt about multiplication or division), and asking students to respond by agreeing, disagreeing, or saying they’re unsure while explaining why. Because everyone at the table gets a chance to voice their ideas, and then they collectively wrestle with different perspectives, students often reconsider or deepen their understanding about the topic at hand. Finally, when the groups come back together for a whole-class reflection, all students benefit from a wide array of reasoning. I have a collection of blogs about Talking Points  in the K-5 math classes here if you are interested in trying them out! 

Try it!

In your next PLC or planning session, review the activities in an upcoming lesson. As you read through each problem, discuss:

  • What questions should I ask students to discuss in small groups that will move their thinking toward the mathematical goal of the day?
  • What structures can I use to ensure all students have the opportunity to share their ideas and have their ideas heard by others in the class? 
  • Which of the four group work structures will you use to support students as they learn together?*

*If you’re planning with your grade-level team, each person can try a different structure and then compare the affordances of each. I’d love to see what you try! Share your ideas in the comments or on IG (@kgraymath)!

Next up will be routines for supporting student learning as they engage in problem contexts, in particularly word problem sense-making strategies.

A Teacher & Mathematician Mash Up

One of the many things I love about Twitter is the diversity of the group in which I have the opportunity to interact. Every day, Twitter provides the space for me to move outside of my classroom happenings and connect with others of varying perspectives and insights on teaching and learning. While these perspectives are so interesting to me, if I am being completely honest, they can also be quite intimidating. Not intimidating in the sense that one person’s point of view is “better” than another, but more in the sense that sometimes math conversations go to a place content-wise or philosophically that I cannot even engage. Not because I don’t feel like I don’t belong, but simply because I don’t even know what the heck to say because I don’t understand what they are talking about or it is so far removed from where I am in the classroom, I can’t relate.

The way I feel in those situations feeds my preconceived notions I have about mathematicians. Not the type of mathematicians I would call my students because they are doing great math, but mathematicians as in, that is their job title, you know, those mathematicians. I so admire the way in which they think about math, however given a choice, I would probably shy away from a conversation with them out of shear nervousness of saying something that sounded silly, or even worse, completely wrong mathematically. That was, until I started my work with Illustrative Mathematics.

Throughout my projects with all of the wonderful people at Illustrative, I have truly seen such incredible value for the perspective each and every person, whether a teacher, a math coordinator, a mathematician, or math specialist brings to the work we do in working to improve teaching and learning. From developing tasks, to facilitating professional development, the work is such an amazing collaborative effort in which I learn SO much. During this learning, my confidence in what classroom teachers bring to a math conversation grows, as does my appreciation for our different perspectives.

Most recently, a mathematician at Illustrative, Mike, and I have been working collaboratively on tasks to be reviewed for the IM site. It has been such an amazing learning experience for me. He is wonderfully thoughtful about the math, open to any ideas and/or questions I have and possibly the quickest email responder I have ever encountered:) Throughout our work together, I felt we were on the same page as far as the content of the task as well as in our thoughts about what students would do with the math of the task. I didn’t feel at all like I was “just” speaking from experience and he was talking from this “mathematician world” in which I couldn’t relate, but that we were both thinking deeply about the math and how it looks in a classroom, it was a beautiful thing.

After our first task, I thought to myself how odd it was that we thought so much alike. I was completely anticipating having these eye-opening mathematical revelations after our conversations together. However, during our second task, the revelation(s) came rolling in and the difference in our perspectives was really interesting and valuable.

The task centers around the commutative property of multiplication with fractions in the context of wrapping packages with riboon, 6 x 2/3 and 2/3 x 6.  In my classroom, I am so wary of students strictly computing without making sense of problems that I make a conscience effort, probably to almost an extreme, to connect their representations to a context. For example, in the problems above, I really want students to “see” the story for each differently. I want them to see 6 group of 2/3 for 6 x 2/3 and 2/3 x 6 as 2/3 of 6 or an area model with 6 and 2/3 as the dimensions. My biggest concern as a teacher, is the students connecting the problem to the context and then noticing patterns that show commutativity. My questions primarily focus on connecting their representation and notation back to the context. Everything to me is focused on context because of my fear of them number-crunching their way through an algorithm they don’t have a contextual visualization. Did you happen to catch that I care about context in that paragraph:) I even blogged about it here: https://mathmindsblog.wordpress.com/2015/03/29/commutativity-in-fraction-multiplication/

Mike and I both agree all of this contextual work is super necessary and important. This past year, I think my students did a beautiful job seeing the commutative property come out through patterns and repeated reasoning, however, after talking more with Mike about this commutativity, I realized I missed such an important piece. A piece that would have really solidified the commutative property in their work through their representations themselves.

I wanted students to match one of those two equations to a context and develop a more appropriate context for the other, however that just shows they come out to the same answer. In my mind it doesn’t really show how they can be commutative within the same context. I had never thought of that so much until Mike emailed me this statement…

“… if someone arranged the pieces of ribbon appropriately they could argue for either equation. I think that what we are after is to match an expression with some kind of reasoning. In other words, the real question to ask the students is to explain their expression via a picture that accurately models the situation.”

This is the point where I completely wish I could reteach this lesson. I would do everything the same, but add this piece. I would love to see if students could see one representation in another for both 6 groups of 2/3 and 2/3 of 6. Have them defend their reasoning and/or find their reasoning within someone else’s work. That really would have proven to students how the  commutative property looks versus just seeing I get the same answer no matter the order of the numbers. Which is kind of how I felt I left it this year.

This has been, and will continue to be, such a wonderful learning experience for me. I SO appreciate the diversity of people I have worked with at Illustrative as much as I appreciate the wonderful mix of people I get to learn from on Twitter. It is enlightening to me that as open and addicted as I am to learning, there are still so many things that I have a classroom perspective on that can be improved and extended through conversations with people who I may typically have shied away from in person. Knowing they appreciate my perspective is such a wonderfully empowering thing for me as a learner. Thank you to all involved in my journey!

Collaboration As Key Work

Earlier this school year, I was involved in an amazing collaborative project with Illustrative Mathematics, The Teaching Channel and Smarter Balanced. Following that experience, I have continued to collaborate with the same wonderful people involved in the project, as well as the incredible educators in the #mtbos! So, when The Teaching Channel asked if I would blog about my collaborative experience, of course I could not resist!

The Teaching Channel Blog Post

The videos of the experience also went live today on The Teaching Channel! I had blogged about this experience twice in the fall and it is so nice to now be able to put collaborative voices to the written work. The collaboration that happens in the video is truly centered on student work, conversations, and reasonings around fractions. I have paired my previous blog post to the accompanying video so you can have a feel for the entire experience!

Background of the Project:

Collaborating Coast to Coast Blog  with this Teaching Channel Blog w/Video Links

The Project Work:

Lesson Study “Take 2” Blog with this Teaching Channel Video

I feel so fortunate to have the opportunity to grow and learn with so many amazing educators! I cannot say thank you to all of you enough!

-Kristin