Category Archives: adaptations

Adapting Lessons Part 3: Engaging with Word Problem Contexts

Word problems have always been challenging for me as a teacher and as a coach supporting teachers. I think part of the reason is that you can’t really teach word problems in the traditional sense. Solving them depends on students making sense of a situation and the question they are being asked to answer, and there are many factors that influence that sensemaking.

One factor is the context itself. I know how important it is for students to apply their understanding in both familiar and novel situations; however, every context will be a mirror for some students and a window for others, and when a situation is completely unfamiliar, I have seen it significantly impact how students approach the problem. Another major factor is the language of the problem itself. Many word problems include vocabulary, sentence structures, verb tenses, and multiple steps that shape how students make sense of the situation. These features require them to draw on things like reading comprehension, syntax, semantics, and sequential thinking, not just mathematical understanding and procedural skill. All of these elements influence the mental model students build based on the context and ultimately affect how they attempt to solve the problem.

Because of these complexities, it is not surprising that many students quickly grab numbers from a word problem and compute or search for key words. These strategies often worked for them in earlier grades, with one-step problems, or within curriculum units focused on particular operations. As a result, they do not always read the context as something that should make sense. Instead, they read while thinking, “Which operation do I need to use to solve this problem?” This reminds me of times when I am reading a book with something else on my mind. Even though I am technically reading the words, I can finish an entire page, or even a chapter, and realize I cannot remember anything I just read. I think this is similar to what happens when students read a word problem while also trying to figure out how they are supposed to solve it.

Understanding these challenges gives us important insight into the kinds of instructional adaptations that best support students in sensemaking. When we pause and give students an opportunity to make sense of a context before jumping in to solve, we set them up for more productive problem solving. And, the more we provide these opportunities, the more metacognitive those ‘sense-making structures’ become for students. There are some great math language routines out there, such as Three Reads and Co-Craft Questions, that are productive in a whole-group setting, but can take a lot of class time, require preparation, and may not transfer easily to a new problem for students. Because we sometimes can’t predict the problems that will be most challenging, I also like to have a few back-pocket, in-the-moment adaptations that promote the same type of reasoning and sensemaking.

These adaptations are all about helping students make sense of a word problem before they jump into solving. By giving them time to notice, wonder, visualize, and pose questions, we make the problem more accessible and give students the chance to build a strong mental model. This approach draws on both math and language skills, helping students focus on understanding rather than just grabbing numbers or looking for key words. When we use these adaptations in the classroom, students are more likely to engage in deeper, more productive mathematical thinking and problem solving.

For more ideas and examples, you can check out some related blog posts:

And of course, if you missed the first two posts in this series, you can find them here:

I look forward to hearing about what you might try! You can share here in the comments or over on IG: https://www.instagram.com/kgraymath/

Adapting Lessons Part 2: Structuring Group Work

Just like the launch of a lesson shapes how students access the mathematics, the structures we use during group work support what they do once they’re in it. In these moments, who talks, who listens, and whose ideas move the work forward can either widen or narrow the thinking that happens. Group time can be a place where rich, collaborative work happens, but it involves much more from the teacher than giving the directions ‘work with your group,’ ‘turn and talk,’ or ‘think pair share.’ While a curriculum can provide teachers with helpful suggestions, the uniqueness of each group of students places the responsibility heavily on the teacher, which makes sense. Only the teacher knows their students and the dynamics within each small group. Small shifts in how we organize students, position their ideas, and support their discussions can dramatically impact both the mathematical practices that students engage in as they work and the mathematical thinking that students bring to the whole group discussion afterward. 

After exploring ways to launch a lesson, the next opportunity for quick, high-leverage adaptations comes when students begin working together. From the moment we ask students to collaborate to the moment when we circulate and listen, the structures we choose can either uncover students’ thinking or unintentionally limit it. Thoughtful approaches to group work can support collaboration, build mathematical habits of mind, and strengthen the sense of community we hope to see in our classrooms. In this post, we’ll look at quick, in-the-moment ways to support group work so every student has an opportunity to contribute and every idea has a chance to surface.

Alternate Ways to Work in Groups

Instructional Challenges: When students jump into group work without clear structures for talking and listening, it becomes easy for one person’s ideas to dominate while others disengage. Without intentional support, some students simply “go along” with the loudest or quickest thinker, and opportunities for deeper reasoning are lost. Additionally, when students stay in the same assigned seats, groups can become static. While this consistency can help early in the year as a community is forming, it can also limit the range of perspectives and mathematical ideas students encounter over time.

Each of these routines require students to articulate their ideas and listen to the ideas of others. One routine I love to support these practices is Talking Points. It didn’t really fit with the others in the table, but I wanted to mention it here as I close out the post. This routine includes giving each group a carefully crafted statement (for example, a prompt about multiplication or division), and asking students to respond by agreeing, disagreeing, or saying they’re unsure while explaining why. Because everyone at the table gets a chance to voice their ideas, and then they collectively wrestle with different perspectives, students often reconsider or deepen their understanding about the topic at hand. Finally, when the groups come back together for a whole-class reflection, all students benefit from a wide array of reasoning. I have a collection of blogs about Talking Points  in the K-5 math classes here if you are interested in trying them out! 

Try it!

In your next PLC or planning session, review the activities in an upcoming lesson. As you read through each problem, discuss:

  • What questions should I ask students to discuss in small groups that will move their thinking toward the mathematical goal of the day?
  • What structures can I use to ensure all students have the opportunity to share their ideas and have their ideas heard by others in the class? 
  • Which of the four group work structures will you use to support students as they learn together?*

*If you’re planning with your grade-level team, each person can try a different structure and then compare the affordances of each. I’d love to see what you try! Share your ideas in the comments or on IG (@kgraymath)!

Next up will be routines for supporting student learning as they engage in problem contexts, in particularly word problem sense-making strategies.